Investu

A real-time stock market investment simulator for
students

INVESTU — J—H----- 1

Table of Contents

AN ALY SIS ettt a e et 10
Background and Problem 1dentificationooouuiiiiiiiicii i 11
Summary of the Identified Problem ... 11
Background and EXPIANationcccuuuiiiiiee i e s e e e s s e e e e s e e e e e s eaae s 11
How the Stock Market FUNCHIONScoiiiiiiiiiiiiiiice et 12
T O NINOIOQY . ettt 13
INTErVIEW WIth ClIENTeiieii e 15
INTEIVIEW WITN USEIS ... 16
Description of the CUITENt SYSTEMoviiiiiii e e e e e e eaanes 17
FATUIE LIST ... 19
FEEDACK #L - ClIENT ... e e e e 20
FEALUIE LISt UPUALES ...ttt e et e e e s e st e e e e e e s e s s e e e e eeeeseeannsrneeeaaens 20
ODJECTIVES ... 21
POtential SOIULIONS.........uiiiiiiiiie e e e e e e 22
Advantages Of VISUAI BASICcccuveiiiiiee ittt e e e st r e e e e e s st e e e e e e e s nntnneeeeaeeesannn 23
Limitations Of VISUAI BASICcoiuiiiiiiiiiie ittt e e e e e e nneee e 23
General Limitations for the PrOJECT.......cooco i 23
Data sources and deStNALIONSiiiuiiiiiiiei e e e e e 24
(D F = [T o0 L YA T o PP 25
[F = [T 10 L)Y ST PP 26
Data Retrieved from Databaseoocuuiiiiiiiiii e 26
Data Retrieved from the INEIMEL..........cueiii e 27
DALA VOIUIMES ...ttt e e e ettt e e e e e e e e e e e e e e e e nnnneees 31
Volumes of Data INPUL DY USETooiiiiiiiiiiiii ettt 31
Volumes of Data Retrieved DY PrOgramooiiiiiiiiiiiiee s e s esieeee e e e e e s seseeee e e e e e s e nneeeees 31
PropoSed SOIULION. e e e e e e e et a e e e e e e e eeeaa b e e aeaeeeeenne 33
Flowchart for Proposed SOIULIONouiiiiiiiiee ettt sbeee e 33

DS o | o 34
LT a1 T = U o =V o S 35
SYSIEM DESIGN ..o 36
DALA FIOW ...ttt e e oo ekttt et e e oo e s e ab b e et e e e e e e e nnbe e et e ee e e e e e nnbraeeaaaeas 37
FOIM LAYOUL DESIGNSeeeeiiiitiiie ittt ettt ettt e e e st e e e sttt e e e sabe e e e anbb e e e e anbaeeeesbbeeeeabbeeeean 39
D= 1= 10Tz LTI DT Lo | o PSSR 43

INVESTU — J—H----- 2

Entity RelationShip DIagram..........coiocuuiiiiiee s e e e s s e e e e e s s st e e e e e e s s annraeereae e e s s snnnrneeeeeees 44
TaDIES - BIrEAKUOWNN ...ttt ettt ettt et sne e nn e e s e s r e e nnr e e nne e e e 45
] @ IO 11 1= = ERRP 48
PSeudO COde fOr FOIMISuiiiiiiiiii e 51
(oo [Tl ol g TRl Y= To [0 O o o SR 51
AdMINVIEWFOrM — PSEUAO COUEeiiiiiiiiie ittt e 52
SIGNUPFOIM — PSEUAO COUEceiiiiiiiiieitiit ettt etttk e ettt e e it e e s aabe e e e s nnn e e e s sanneeas 53
MaINFOrM — PSEUAO COUEeeiiieirii ettt ettt e et e s ne e e snneeenee e 54
210Ny o g Il oY= 0 o [0 I @ Lo = SR 55
DeVelOPMENT L. . 56
MainForm — Investu - DevelopmMENt L.........ooiiiiiiiiiiieeieei e 57
Global Variables — MainForm - Investu Development 1ccccoiiiiiiiiiiee e 57
MainForm_Load — MainForm - Investu Development 1ccooiiiiiiiiiieeeiiiiee e 59
CreateChart — MainForm - Investu Development 1 ..o 60
Timerl_Tick — MainForm - Investu Development L. 60

Development of the sub-routine FetchStockInfo - MainForm -

INVESTU DEVEIOPIMENT L ..ttt ettt e e e et e e e it e e s anbe e e e e neee 62
FetchStockinfo — MainForm - Investu Development L..............uuuuvvviriririeieieinieinieierereiernn. 64
SplitStockinfo — MainForm - Investu Development L. 66
PlotNewPoint — MainForm - Investu Development L ... 69
ClosePositionsButton — MainForm - Investu Development 1 ..., 69
UpdatePortfolio — MainForm - Investu Development L.............uuiuivieiiimirieiiinieieieieieiereinrnnrnnn. 72
UpdateBalance — MainForm - Investu DeVelopmMENt Lc.eeiiiiiiiiiiiiiee et 73
BuyForm - Investu DeVelOPMENT 1uuiiiiiiiiiiiiiiiiiiiii e 74
Global Variables — BuyForm - Investu Development 1..........ccovviiiieieiiiiiee e 74
BuyForm_Load — BuyForm - Investu Development L.........cccooiiiiieiiiiiieeeiiieee e 75
TrackBar_Scroll — BuyForm - Investu Development L.........ccooiiiiiiiiieiiiee e 76
BuyButton_Click — BuyForm - Investu Development L.............uuuuivieirieirieiiinieieinieieieiennneininnn. 77
Testing 1 - Investu Simulation — Development 1. 79
Testing 1 Findings — Investu Simulation - Development

U U PP PUPPRTP 93
Fixing Errors - INvestu DeVelOPMENT L..........uuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeees 94
L o]t PP PP PP PPPPT 94
ETTOF 2 e e e e 96
Testing 2 - INVESTU DEVEIOPMENT Luiiiiiiiiiiiiiiiiiiiiiiiiiieeieieeeeeeeeeeeeeenesseeeseeeeeeeeeeeeeneennes 97

INVESTU — J—H----- 3

Feedback #3 — Client — Investu Development 1...........cooooiiiiiiiiinni e 100

Final Conclusion — Investu Development L.............iiiiiiieiiiiiiiiiiie e e e 101
DEVEIOPMENT 2. . e 102
Database — InvestuServerProgram - Development 2..............cceceeiiieeeeiieiiiiiiin e 103
Investu Server Program — Version 1 — Development 2euuiiiiiiiiiimimiiiiiiiiiiniinnns 104
Imports/Namespaces — InvestuServerProgram -
[1YY (o] o] 1 =Y o 2SR 104
Global Variables — InvestuServerProgram - Development 2..........cceveiiiiieiniiiie e 105
MainForm_Load — InvestuServerProgram - Development 2cooivivieiiieee e 106

PopulateSymbolArray — InvestuServerProgram -

[1YY (o] o] 1 =1 o SRR 106
StartButton_Click — InvestuServerProgram - Development 2., 108
Timerl_Tick — InvestuServerProgram - Development 2. 109

FetchLatestStockInfo — InvestuServerProgram -

[0 TSN 7= 1 o = 1 110
FormatString — InvestuServerProgram - Development 2..............uuuvivieieirieieimieieieiniereinnn. 112
UpdateDatabase — InvestuServerProgram - DeVelopment 2cooiiiiieiiiieeiniieee i 113
SplitStockInfo — InvestuServerProgram - Development 2ooooiiiiiiiiie e 114

GetStockChange — MainForm - InvestuServerProgram -

[0 TSN 7= 1 0 = 1 115
GetStockName — MainForm - InvestuServerProgram -

DEVEIOPMENT 2 ..ttt ettt skttt e skttt e s bbb et e s bbbt e e e bbbt e e anb b e e e s nnneeas 116
GetStockPrice — MainForm - InvestuServerProgram -

(DTSN 7= 1 o =T 0 117
StoreCrashinfo — MainForm - InvestuServerProgram -

(DTSN 7= 1] o =T 01 118
Investu Simulation — DeVEIOPMENT 2uuuiiiiiiiiiiiiiiii e 119
Database 2 — Investu — DeVElOPMENT 2o 120
SignUpForm — Investu - Development 2. 121
Global Variables — SignUpForm — Investu Development 2 ..., 121
SignUpButton_Click — SignUpForm - Investu Development 2 ..., 121
ProceedToSignUp — SignUpForm - Investu Development 2 ... 123
ValidUsername — SignUpForm - Investu Development 2. 124
ValidatePassword - SignUpForm — Investu Development 2. 126
CreateNewAccount — SignUpForm — Investu Development 2..........cccoovveeeiiiiiieniniiee e 127
LoginForm — INvestu - DeVEeIOPMENT 2....... ...t 128
Global Variables - LoginForm — Investu Development 2ooiooiiiiiiiieieee e 128
Login_Click - LoginForm — Investu DevelopmeENnt 2cooiiiiiiiiiiieeiiiiee e 129

INVESTU — J—H----- 4

ValidUserLogin - LoginForm — Investu Development 2 ... 130

LoadUserInfo - LoginForm — Investu DevelopmeENt 2..........cocvveviernieeiiiee e 131
MainForm — Investu - DeVEIOPMENT 2........i i e e e aaaees 132
Imports/Namespaces— MainForm — Investu Development 2............occeeiiiieeiiiiiee e 132
Global Variables — MainForm — Investu Development 2cccveeeiiiiiiieeec e 132
MainForm_Load — MainForm — Investu Development 2.........ccooooiiiiieiiee s 134
PopulateSymbolArray— MainForm — Investu Development 2. 135
Timerl_Tick — MainForm — Investu DevelopmeNnt 2oviiiiiiiiiiiiiee et 136
CalculateVolatility — MainForm — Investu Development 2cceeeoiviiiiieeeee e 137
FetchBalance — MainFOrmM — VEISION 2.........oiiiiieiiiiiiieesiee e 137
FetchOpenPositions — MainForm — Investu Development 2coooiiiieiiiieeniiieee e 138

FetchStockDetailsString — MainForm — Investu Development

TP 140
SplitStockinfo — MainForm — Investu Development 2., 140
BuyButton_Click — MainForm — Investu Development 2cooiiiiioiiieie e 140
UpdatePortolio — MainForm — Investu DeVelOPMENT 2eeiiiiiiieiiiiiie e 141

SelectStockComboBox_SelectedindexChanged — MainForm

— INVESIU DEVEIOPMENL 2 ...ttt 142
Plot24hrData — MainForm — Investu Development 2.........coouviiiiiiiieiiiiiee e 142
PlotNewPoint — MainForm — Investu Development 2 ... 143
GetStockPrice — MainForm — Investu Development 2., 143
GetStockChange — MainForm — Investu Development 2 ..., 143
GetStockName — MainForm — Investu Development 2cuevoiieieiiiiie e 144

ClosePositionbutton_Click — MainForm — Investu
(DTSN 7= 1 o =T 01 144

LogoutButton_Click — MainForm — Investu Development 2..............uuuvvvivieivimieinieieieieieininennin. 147

GraphScaleComboBox_SelectedindexChanged — MainForm
— INVESTU DEVEIOPMENT 2 .. .ottt et e e et e e e sbb e e e anbneeeeaa 147

OpenPositionsListBox_ItemCheck — MainForm — Investu
[0 TSN 7= 1 o =T 1 A 147

CreateChart() — MainForm — Investu Development 2. 148

GraphSettings() _SelectedindexChanged — MainForm —

INVESTU DEVEIOPIMENT 2 ...ttt ettt e et e e e st e e s sabb e e e e snbbeeeesbneeeeans 148
Testing 1 - Investu Server Program — Development 2ccooeeiiiiiinieeeiieeiiiieee e 149
Testing 1 — Investu Simulation — DeVelopmMENt 2uuuiviiiiiiiiiiiiiiiiiiiiiieiieieeeneinee. 163
SIGNUPFOIM TESHING L ...oeeeiieiiieiee ettt sttt e s sttt e e s aab e e e e st e e e e snbe e e e enbeeeeeneee 163
LOGINFOIM TESHNG L .ottt e ettt e e e e e s bbb e et e e e e e e s anbe b e e e e e e e e e aannbnneeeeaens 170

INVESTU — J—H----- 5

MAINFOIM TESHNG L .ottt e e et e e e e e e e s e bbb e e e e e e e e e s nnbebe e e e e e e e e annbneneaaaens 180

Testing Findings - Investu DeVelOpMENt 2.......ccoi e i 189
Fixing Errors - InVestu DeVeIOPMENT 2. ... e e e eeannes 190
Testing 2 - INveStu DeVEIOPMENT 2eiiiiiiiiiiiieiiiiiiiieeie e eeneeee 191
Feedback #4 — Client — Investu Development 2.........ccccoooviiviiiiiiiii e 192
Final Conclusion — Investu DevelopmeNnt 2............uuuuiiiiiiiiiiiiiiiiiiiiiiiiieneeees 193
DEVEIOPMENT 3. e 194
Database 3 — Investu — Development 3....... ... 195
AdminView - Investu — DeVelopmMENt 3ooiiiiiiiiiiii e 196
AdminView_Load — AdminView — Investu Development 3.........ccooi e 196
FetchTeams — AdminView — Investu Development 3 ... 196
AdminView_Load — AdminView — Investu Development 3..........cccccveviviiiivieeeeeeeee 198
AdminView_Load — AdminView — Investu Development 3.........cccoooiiieiiiiiiee i 199
CreateNewTeam — AdminView — Investu Development 3. 201

TeamIDCheckedListBox_ItemCheck — AdminView — Investu

[0 TSN Z= 10 o =T 1 A 203
FetchTeamInfo — AdminView — Investu Development 3..........cooiiiiieiiiiieiieee e 204
FetchUsersInTeam — AdminView — Investu Development 3 ... 207
MainForm - Investu — DeVvelopmMENt 208
MainForm_Load — MainForm — Investu Development 3. 208
PopulateSymbolArray — MainForm — Investu Development 3..........cooiiiiiiiiiieiiieee e 209
FetchAlerts — MainForm — Investu DeVvelopmMENt 3............uuuueriirieiiirieieieieieiernierninreeee————.. 209
Timerl_Tick — MainForm — Investu Development 3. 211
FetchTradeHistory — MainForm — Investu Development 3 ... 212
LoadDetailsGrid — MainForm — Investu Development 3..........cooiiiiiiiiiiieiieiee e 214
CalculateVolatility — MainForm — Investu Development 3 ..., 215
FetchBalance — MainForm — Investu Development ... 215

FetchStockDetailsString — MainForm — Investu Development

B ettt ettt eeeeeeeeeteeeEeeeeeasee o et ate e EeeEeeaEeeeR et enee e et e Rt e aReeaReeaRteenEe e Rt e Rt e eEeeeReeenteenteeaReeaneeaneeeneeannen 215
FetchMarketNews — MainForm — Investu Development 3..............uuivivieiiiiieimieiniiieieieienrnn. 216
FetchWorldNews — MainForm — Investu Development 3ooo i 218
SplitStockinfo — MainForm — Investu Development 3. 219
BuyButton_Click — MainForm — Investu Development 3 ... 220

SelectStockComboBox_SelectedindexChang — MainForm —

INVESTU DEVEIOPMENT 3 ...ttt e e ettt e e e e e e s e bbbt e e e e e e s e e nnbbeeeeeaens 220
Plot24hrData — MainForm — Investu Development 3. 220
PlotNewPoint — MainForm — Investu Development 3 ...t 220

INVESTU — J—H----- 6

GetStockChange — MainForm — Investu Development 3 ... 220
GetStockPrice — MainForm — Investu Development 3. 220
GetStockName — MainForm — Investu Development 3c.c.ovvvvve e 221

ClosePositionsButton_Click — MainForm — Investu

DEVEIOPMENT 3 ...ttt ettt e e skt e e sk e et e s bbbt e e sk be e e e s bbbt e e s nnr e e e e nnee s 221
InfoButton_Click — MainForm — Investu Development 3. 221
StoreNewTrade_Click — MainForm — Investu Development 3..........cooccvveeeeeeeevivciineeeee e 222

CreateAlertButton_Click — MainForm — Investu Development

K PR OPRPR 224
CreateNewAlert — MainForm — Investu Development 3 ... 226
ValidateAlertPrice — MainForm — Investu Development 3 ... 227

OpenToolStripButton_Click — MainForm — Investu

(DY =T (o] o]0 1T | A PSPPSR PP 227
DeleteUserFromTeam — MainForm — Investu Development 3coccoveiiiiieiniiiee i, 229
UserAlreadylnteam — MainForm — Investu Development 3..............uuuvveieieieieieinimieineeiernrnenn. 230
ValidTeamCode — MainForm — Investu Development 3. 231

CheckTeamCodeExists — MainForm — Investu Development

L TR 232
EmptySpacelnTeam — MainForm — Investu Development 3ivieieiiiiieininiiiiieininrnininnnn. 233
AddNewPlayToTeam — MainForm — Investu Development 3..........cccccveviviiieeee 235
BuyForm - Investu — DeVelOPMENT 3uuiiiiiiiiiiiiiiiiii e 237
Global Variables — BuyForm — Investu Development 3., 237
BuyForm_Load — BuyForm — Investu Development 3............uuiiiiiiiiiiiiiiiiiiieiiieieinisinieinrnennneninnn. 237
QuantitySlider_Scroll- BuyForm — Investu Development 3.........cccccveiiiieiniiiee e 237
BuyButton_Click — BuyForm — Investu Development 3...........cooiiiiiiiiiiee e 238
UpdateBalance — BuyForm — Investu Development 3............uiviiiviiieiuiiieiiieiiieinininieneesrnnnnnnnn. 240
StoreNewPosition — BuyForm — Investu Development 3., 241
Investu Server Program — Version 2 — Development 3uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiinens 243

Namespaces/Imports — Investu Server Program — Investu
[TSNV Z=T 1] o =T 1 243

Global Variables — Investu Server Program — Investu
(DY =T (o] o] 4 1T | S SRR PR 243

InvestuServerProgram_Load — Investu Server Program —
INVESTU DEVEIOPMENT 3 ...ttt et e e e ettt e e e e e s et et e e e e e e e s e e nnbreneaaaens 244

InvestuServerProgram_Load — Investu Server Program —
INVESTU DEVEIOPMENT 3 ...ttt e e e e e et e e e e e e e s et et e e e e e e e s e e nnbreneaeaens 244

StartButton_Click — Investu Server Program — Investu
(DY =T (o] o] 4 1T | A PSPPI 245

INVESTU — J—H----- 7

FillDB_Load - Investu Server Program — Investu
(DY (o] o] 4 1T oL A T TR P UTT TP 246

FillDBButton_Click — Investu Server Program — Investu
(1YY (o] o] 1 =1 o A SR 247

BackgroundWorker_DoWork — Investu Server Program —
INVESTU DEVEIOPIMENT 3 ...ttt ettt et e et e e e e e sbb e e e e sabbe e e e abneeeeaas 247

PopulateSymbolArray — Investu Server Program — Investu
(1YY (o] o] 1 =1 o A SR 248

Timerl Tick — Investu Server Program — Investu
(1YY (o] o] 1 =1 o A SR 248

FetchLatestStockInfo — Investu Server Program — Investu
DEVEIOPMENT 3 ...ttt ettt e e sk et e e bbbt e s bbbt e e s bbbt e e e b be e e e s nn e e nnne s 248

FormatString — Investu Server Program — Investu
[0 TSN Z= [o =T 1 A 248

UpdateDatabase — Investu Server Program — Investu
(DY =T (o] o] 4 1T | S PP PRSP PP 249

SplitStockInfo — Investu Server Program — Investu
(DY =T (o] o] 4 1T | S PP PRSP PP 250

CheckAlerts — Investu Server Program — Investu
[0 TSN Z= 10 o =T 1 A 250

SendAlert — Investu Server Program — Investu Development

DeleteAlert — Investu Server Program — Investu
[TSNV Z=T 1] o =T 1 A 254

FetchAlerts — Investu Server Program — Investu
[TSNV Z=T 1] o =T 1 A 254

GetEmailUsingID — Investu Server Program — Investu
(DY =T (o] o] 4 1T | A PP SPU PP 255

GetStockChange — Investu Server Program — Investu
[TSNV Z=T 1] o] =T 1 A 256

GetStockPrice — Investu Server Program — Investu
(DY =T (o] o] 4 1T | A PSPPSRSO PPP 256

GetStockName — Investu Server Program — Investu
(DY o] o] 4 d 1T oL A J TP P UPT TR 256

StoreCrashlinfo — Investu Server Program — Investu
(DY 7] (o] o] 4 1T oL A T PP P UPTTR ORI 256

Timer2_Tick — Investu Server Program — Investu
(DY =T (o] o] 4 1T | S SRR PR 256

DBPathButton_Click — Investu Server Program — Investu
(DY (o] o] 4 1T oL A T TP PR PT TP 256

INVESTU — J—H----- 8

Testing 1 — Investu Simulation — Development 3.............uuviiiiiiiiiiiiiiiiiieeeeees 257

= VT Lo T =] 1T SR 257
o [41T A=Y =) 1T PP 276
Testing 1 — Investu Server Program — Development 3.............euuuiiiiiiiiiiiiiiiiiiiiiiiiiiiinnns 282
CONCIUSTON e 297
Feedback #5 — Users - Investu — Development 3iiiiiiiiiiiiiiiiiiiiiiiiniiniiienees 298
Feedback #6 — Client - Investu — Development 3cccooooiiiiiiiiiiiii e 300
Updated FEATUINE LIStuuuuiiiiiiiiiiii e 302
Changes for Future DeVEeIOPMENTScii i i e e e 304
Improved analyitcal Capabilitiescooui i 304
Improved Potential for EXpansion Of USEr BASEoocuuiiiiiiieiiiiiiiiie e 304
Expanded Access to INdeXeS and SECUNTIESuuuuuuururuiriiiiieieieieieisieiererererernrererere——————. 305
Bibliographyuucoiiiiiiic e Error! Bookmark not defined.

INVESTU — J—H----- 9

Analysis

Background and Problem Identification

Summary of the Identified Problem

Mr. Butterworth, is the head of Economics at King Edwards School, who has had a lot of experience over
the years in preparing students for the Student Investor Challenge. As an Economics and Computing
student Mr. Butterworth approached me in search of a solution regarding the Student Investor Challenge
that the school participates in. Mr. Butterworth feels that those who are not currently competing in the
Student Investor Challenge generally didn’'t do so as they felt they didn’'t have enough experience to do
so, and even those who did participate feel they could be in a much stronger position had they had some
prior experience before starting the competition.

Background and Explanation

The A-Level Economics course does not go into a lot of detail regarding stocks and investment, despite
the fact that trading stocks and shares is a significant part of Economics in the real world and relies
heavily on many of the underlying principles of Economic theory. The first exposure most students get to
investment is in the Student Investor challenge, an investment challenge participated in by around 40,000
students from across the UK, who compete in teams of 4, investing £100,000 of virtual money on stocks
such as those in the FTSE100'. The teams aim to try and make the most money possible in the time
allowed, with the top 500 teams going through after 2 months to compete in further rounds. Of those 500
teams, the winning team receives a paid trip to New York, and money for their school.

With such a large prize available and the prestige that comes with winning the Student Investor Challenge,
one would imagine there would exist a program to practice buying and selling stocks before the Student
Investor Challenge starts. As an Economics student and a Computing student, | was interested in

whether this software existed. However, after much research there appears to be only a few reliable
programs, and those that do exist only support stand-alone accounts, with no built-in way to collaborate
with a team. Furthermore, during practice, it would be useful for teachers to be able to track student
teams who are planning to enter the challenge, and observe them as they prepare for the start date.
Through research I've found that this feature also doesn’t appear to exist.

It therefore appears that there is a need for a multi-user, integrated and intuitive simulator, to:

1) Allow students participating in the Student Investor Challenge to practice investing in the stock
market with the ability for teachers to guide and aid users in their trading decisions.

2) Allow even users not participating in the Student Investor Challenge to become familiar with the
concept of trading on the stock market, and to practice with the guidance and advice of their
teacher.

INVESTU — J—H----- 11

How the Stock Market Functions

A share is a piece of a company that someone can buy. When a company needs to raise extra funds, it
issues shares through an initial public offering (IPO), in which shares are issued at a price determined by
the estimated value of the company and the quantity of stocks being issued. These are then sold to
traders and investors. After these initial shares are sold, the company keeps the funds generated, and the
investors keep the shares they have bought in the company. The investors can then trade these shares,
with other traders, however the company now has no part in this deal and receives no money from any of
these trades.

Investors and traders by shares because they have a value that changes. If an investor buys a share, and
the value of that share increases, they can then sell that share for profit. The price of shares is
determined by the market, which is a huge collection of investors and traders who buy and sell stocks. It
should be noted that when an investor decides to buy shares for a certain price, there must be someone
else in the market willing to sell their shares for that same price. If there exists a higher demand for
shares in a company than there exists supply, then the price of the company’s shares will be driven down,
and vice versa. The fluctuations in supply and demand for shares are simply referred to as ‘market forces’.
The reasons behind why these market forces push or pull in a certain direction are, in their most basic
form, the feelings and attitudes of investors towards a certain company. These feelings and attitudes are
largely dictated by the earnings of a company. If a company’s revenue begins to decrease, an investor
would perceive shares in that company to be of less value, and so be more reluctant to purchase them,
leading to a fall in demand and an increase in supply, and hence a drop in the price of the shares.

In reality, however, it can be very difficult pinpoint the future prices of stocks and shares, and there
doesn’t exist a perfect model that can explain with complete certainty the reasons behind fluctuations, or
predict them in the future. iShares are volatile, meaning their price can change rapidly, with seemingly
very little reason. It is this quality that makes trading shares a potentially lucrative pursuit.

The stock market can be divided into sections that are valued using indexes. An index is the
measurement of value of a selection of stocks, calculated from the prices of the stocks that comprise it.
There are many such indexes, the most well-known of which being the FTSE 100, S&P Global 100 and
the MSCI World. The FTSE 100 is a list of 100 companies on the London Stock Exchange that hold the
highest market capitalization. The FTSE 100 is used as a gauge of growth in the UK, and is one of the
indexes that can be traded on in the Student Investor Challenge, and is arguably the most relevant index
to track for investors in the UK.

INVESTU — J—H----- 12

Terminology

The following are definitions of subject-specific terms and phrases that appear in the write-up of this

project i

Security A tradable financial asset — refers to any form of
financial instrument including stocks and shares

Stock The general term used to describe ownership
certificates of a part of any company

Share Usually used to refer to shares in a specific
company

Index A hypothetical portfolio of securities tracking a
particular market

FTSE 100 An index tracking the top 100 UK based companies

with the highest market value

Market Value

The price which a security would fetch in a market.

Shareholders

An owner of shares in a particular company — an
individual who has an interest in the success of the
company

Execution The completion of a buy or sell for a security

Quote The most recent price at which a security was sold
Ask quotes are the most recent prices and
quantities at which shares can be bought or sold

Volume The quantity of securities in a given market traded

in a given period of time

Initial Public Offering

The initial value at which a company sells its
shares, usually by companies looking to quickly
raise revenue

Volatility

The statistical measure of the dispersion of returns
in a given security, calculated using the standard
deviation. Generally, the higher the volatility, the
riskier the investment

INVESTU — J—H-----

13

Investor

A entity who puts money into securities or
commodities with the expectation of receiving profit

Market Capitalization

The value of a company traded on the stock
market, calculated by multiplying the current share
value by the total number of shares

Intra-day Price

The movements of a share price during the day

Outstanding Shares

Refer to the number of shares owned by investors

Day trading Short term trading of securities in which the buying
and selling takes place within the same day

Hedging The practice of taking a position in one market to
offset the risk adopted by in an opposing market

Portfolio A range of investments made by a person

Spread The difference between the bid price and the ask

price of a security

INVESTU — J—H-----

14

Interview with client

The following is an interview with the client, Mr. Butterwort, the head of Economics at King Edwards
School. The interview has been edited for brevity.

“What would you say is the issue currently with the Student Investor Challenge?”

“I feel as though a lot of students go into the challenge with very little knowledge of trading, because it's
not a topic covered in our syllabus. Of course, the economic principles that underpin the stock market are
covered, but you can’t substitute real life experience with theories from a textbook. On one hand, that’s
the whole point of the challenge — to expose the students to the world of trading, but on the other, with it
becoming so competitive, those without some background knowledge and experience are struggling to
place well. The students need a way to practice before the start date of the challenge, so that when it
starts, they have their strategy and knowledge already in place to do the best they can.”

“Why do you think this is an important problem to solve?”

“The challenge is becoming increasingly more competitive, and over the years has become well known
because teams who do well have a good chance of winning pretty significant prizes, and recognition for
their achievements from Universities and employers and so forth. When a student includes it on their
personal statement, that they’ve placed highly, it creates a good impression. It's therefore quite important
for us to step up our game when preparing our students, so that they have a head start over teams from
other schools, and can do as well as possible. Although having said that, I’'m not sure how long we’d keep
that advantages as a program that solved this problem would be widely used by other schools who do the
challenge.”

“If we were to create a simulator to model the trading experience, how would that help solve this
problem?”

“A simulation similar from the one they use in the real challenge would allow the students to practice
before the real simulator is available to the teams, which is obviously a great head start as almost all
students entering the challenge

“Could you specify what features you would the simulation to have?”

“Well the program would need to have the ability for students to login into their account and buy and sell
stocks, like the Student Investor Challenge. They should have a balance, maybe that | can see and edit.
They would have to be able to see all of the stocks they currently have in their portfolio, and sell them if
they decide it's a good time to sell. It would be useful to be able to see the historic prices of a stock, so

the students can see where the price has moved in the past 24 hours, for example. To simulate the real
thing, teams should definitely be able to work together, and perhaps share their balance together so that
all of their trades contribute to one team result. It would help if | could have an overview on a teachers
account, of all the teams in the school. Because a lot of students don’t have much experience with trading,
if the program could suggest stocks to invest in, and suggest stocks to stay away from, it might help the
students to start to get a feel of which stocks to trade and why.”

INVESTU — J—H----- 15

Interview with users

Ben is a student participating this year in the Student Investor Challenge. His team was 4" out of 10,000
teams last year, narrowly missing out on the prize money. The following is an interview with him which
aimed to discover other areas that could be improved upon, and further features, other than those already
suggested by Mr. Butterworth, that Ben and his team feel would have been useful to have access to
before the challenge started. The interview has been summarized for brevity.

“Ben, the basic premise of the program would be a stock trading program that your team could
log into at any time, ever before the competition has started, to practice trading. At its core, what
do you think this program should be able to do?”

“I think what’s most important is that the program has instant access to the prices of stocks in the FTSE
100, as that’s the index we trade on most. Also, it would be good if the price data is displayed in real time
and is accurate. Without that, it's very difficult to trade as information displayed on websites and on the
program, wouldn’t match up, which would make our research confusing and would mean we’d probably
make decisions based on misleading information”

“Visually, how do you imagine this program looking?”

“I find the actual program for the challenge is quite difficult to use. Its cluttered and not clear, with
information spread over many tabs. To make progress faster, we'd like a program that clear and concise,
with information displayed in an easy to understand way. Perhaps it would have stock information on one
side and a list of stocks currently in our portfolio on the other. There would also need to be space for
other information like notes and graphs.

“What other features do you think would add to quality-of-life when using the program?”

“If data from the last hour, day and week could be visualized in graphs, it would make the process of
deciding which stocks to invest in a lot clearer and more accurate. Also, the program for the actual
challenge wastes a lot of our time as it doesn’t display the commission charge for each trade. If that could
be displayed before each trade it would save us having to work it out, which would allow more time for
more important things like researching stocks. With all of us logging in and trading at different times of the
day it can sometimes be difficult to know who’s bought what and why. If we could see who made which
trade and their reason why in a notes section it would clear up a lot of confusion. None of us are that
great at computers so | think if it could be as simple to use as possible it would be good.”

“It would be good if this program was useful not only for the Student Investor Challenge but also
for general use by students, after the challenge is over. Can you think of any features that could
be added that would be beneficial in that respect?”

“Yes — there are some features that the challenge doesn’t have but would be very useful if we used the
simulator outside of the challenge, like later in the year. — the Stop Loss / Take profit feature is one of
them. That basically would allow us to set a price that, if reached by a stock, would automatically trigger it
to be sold, to allow users to cash out or stop losing money, even if they aren’t online at the time. Being
able to see the volatility of a stock is another idea. Depending on your strategy, stock volatility is a great
indicator of whether to invest or stay away from a trade.”

INVESTU — J—H----- 16

Description of the current system

. Student Investor Home About ReTrader Trade Lleague Resources Prizes
The system currently in —

place is the Student You are logged in as Alberto & Co.
Investor program. The
interface the user is faced
with when they log into the
program. It features 8
buttons that allow the user
to navigate. The function
of each button is not
overly clear for new users.

Selecting the first box opens
the Investor Portfolio for the

AP
,./_\/ Active Investor Portfolio for Alberto & Co.

tea‘m ! Wh ICh d |Sp Iays the This page shows you all the stock that you curently own in your Active Investor Portfolio and what it is worth. It also shows any
H - H important messages for your team fromthis portfolio and is the place to be if you want to sell stock from your Active Investor
interface to the right. This e

haS the I|St Of Curl’enﬂy Open Not what you were looking for? Your Strategic Investor Portfolio is here.

pOS|t|0nS and the deta"s for You might also want to watch our video guides on the types of investments available in the game.

those positions

Active Investor Portfolio Overview

* Jotal Pertfelio. Value: £101,476.64
* Available.Cash: £12.14
® Current Active Investor Portfolio League Position: 121 of 4727 teams (view league table)

® Current Combined League Position: 25 of 4727 teams (view combined league table)

Your Active Investor Portfolio ETF and Company Stock

Company/ETF Name | Ticker Symbol | Shares Held Purchas_e Date Purchase Price Current Price Pmﬁ_t if Sold Now sell?
and Time {pence) {pence) {£s, inc. charges)
+691.01
Ashtead Group PLC | AHT:ILN 968 2017-11-27 13:16:54 1,903.00 1,987.00 (2.73%) Sell AHT:LN
N +241.29
Diageo PLC DGE:LN 765 2017-11-2213:17:12 2,607.50 2,656.00 (1.20%) Sell DGE:LN
+2,185.12
easylet PLC EZILN 1522 2017-11-17 13:26:21 1,292.00 1,444.00 (11.05%) Sell EZELN
+244.52
Ferguson PLC FERG:LN 374 2017-11-22 15:40:53 5,320.00 5,420.00 (1.22%) Sell FERG:LN
-310.45
Sage Group PLC/The | SGE:LN 2589 2017-11-2111:47:09 766.50 759.50 (1.56%) Sell SGE:LN
-1.56%

INVESTU — J—H----

FTSE 100 Companies

INVESTU — J—H----

Ticke Pri Ch
Company Name [exer Industry Sectar Inclustry Group ree ange
i Symbaol . . (pence) {percent)
Sort] ; sort’ sort .
SOrt! sort] Sort!
3iGroup PLC LN Financial Private Equity 867.50 -7.50 (-0.86
Admiral Group PLC ADM:LN Financial Insurance 1870.00 -23.00 (-1.22%)
Anglo American PLC AALILN Basic Materials Mining 1327.00 -25.50 (-1.89%)
Antofagasta PLC ANTOILN Basic Materials Mining 887.00 -0.50 (-0.06%)
Ci MNon-
Ashtead Group PLC AHTLN ;S?;TE“ on Commercial Services 1987.00 +16.00 (+0.81%)
Ci , Non- o
Associzted British Foods PLC ABF:LN C:S:;Ter on Food 2889.00 -31.00 (-1.06%)
Ci , Non- . o
AstraZeneca PLC AZNILN C:S:;Ter on Pharmaceuticals 4711.50 -12.00 (-0.25%)
Aviva PLC AV/ILN Financial Insurance 503.50 +2.50 (+0.50%)
Ci MNon- -
Babcock International Group PLC BAB:LN ;S?;TE“ on Commercial Services 663.50 14.50 (-2.14%)
BAE Systems PLC BA/:LN Industrial Aerospace/Defense 554.50 -6.50 (-1.16
Barclays PLC BARCILN Financial Banks 191.90 +0.90 (+047%)
Barratt Developments PLC BDEVILN Consumer, Cyclical Home Builders 608.50 -2.50 (-0.41%)
BHP Billiton PLC BLT:LN Basic Materials Mining 1326.00 -11.00 (-0.82%)
BPPLC BR/:LN Energy Oil&Gas 452.00 -2.25 (-0.46%)
Ci Non- o
British American Tobacco PLC BATS:LN c:;:;rer' on Agriculture 4994.00 -24.00 (-0.58%)
British Land Co PLC/The BLND:LN Financial REITS 645.50 +8.50 (+1.33%)
BT Group PLC BT/AILN Communications Telecommunications 262.65 +5.45 (+2.12%)
Bunzl| PLC BNZL:LN Consumer, Cyclical Distribution/Wholesale 2087.00 +1.00 (+0.19%)
Burberry Group PLC BRBY:LN Consumer, Cyclical Apparel 1724.00 -15.00 (-0.86%)
Carnival PLC CCL:LN Consumer, Cyclical Leisure Time 4872.00 +4.00 (+0.08%)
Centrica PLC CNAILN Utilities Gas 147.00 +0.00 (+0.00%)
Ci Non-
Coca-Cola HBC AG CCH:LN c:;:;rer' on Beverages 2248.00 +16.00 (+0.69%)
Compass Group PLC CPG:LN Consumer, Cyclical Food Service 1501.00 -4.00 (-0.27%)
Ci , Non-
ConvaTec Group PLC CTECAN C:S:;Ter on Healthcare-Products 208.90 +140 (+0.67%)
CRH PLC CRH:LN Industrial Building Materials 2612.00 +33.00 (+1.28%)
Croda International PLC CRDAILN Basic Materials Chemicals 4272.00 +6.00 (+0.14%)

Selecting the
gold button on
the main page
takes the user
to a list of FTSE
100 stocks and
displays
relevant
information
such as latest
price.

18

Feature List

After analyzing the interviews with the client and user, and looking at the Student Investor Challenge
program (screenshots provided by the user, Ben), the following list was compiled. It consists of features
that are intended to be implemented into the simulation. After each feature, ‘client’, ‘user’ or ‘SIC’ is
written, indication whether it was the client, user, or Student Investor Challenge that inspired that feature.
‘Inferred’ means that although not explicitly stated, this feature will be necessary for the other features to
be added.

¢ Ability to create and login to accounts (client)

¢ Ability to join and trade on a team account (client)

e Ability for users to be designated as admins (client)

¢ Ability for account progress on team and personal accounts to be saved between sessions
(inferred from client and user)

o Ability for admins to view teams list (inferred from client)

o Ability for admins to view team details and progress (inferred from client)

e Ability to view real-time information for all FTSE 100 stocks (client and user)

o Ability to select an amount of stocks and buy that amount using an up to date virtual balance, at
real current price (client/user)

o Display for all stocks currently held in portfolio (client/SIC)

o Ability to sell stocks in portfolio at real current price (client)

e Graphs to display current day price trends of all stocks (user)

e Graph to show all time price changes of all stocks (inferred from user)

e Ability to create price alerts and be notified when stock reaches current price (inferred from user)

o Interface allowing users to see all current alerts on their account (inferred from user)

¢ Interface allowing user to see entire trade history (SIC)

¢ Interface allowing user to see all stocks in the FTSE 100 in a single screen, with details such as
price (SIC)

¢ Notes section displayed in trade history and portfolio with reasons for trade decision (user)

INVESTU — J—H----- 19

Feedback #1 - Client

The following is a brief email discussion with the client regarding the feature list, in order to check that the
project is progressing in the right direction before continuing with the analysis and design phase. The
replies have been edited for brevity.

“Mr. Butterworth, attached is the General Plan for the project, with the feature list included. Do
you have any comments regarding the project so far?”

“Structurally that outline looks very good, and I’'m sure if you could get all of those features in the
simulation will do everything we need it to do. | would add, however, that some extra information
displayed would perhaps make the trading experience a bit more enjoyable for the students. By that |
mean things like world events and recent market news, to liven it up a little. On a slightly larger scale, |
think features such as currency trading, or trading on commodities and other indices could increase the
scope of the program and would be a really positive addition. Students have become quite interested in
crypto currency recently and so | think if we could possibly add those trading options in it would really
increase the pull of the program from not just Student Investor participants, but to a much wider base of
economically minded students.

“Pll take that into consideration. Now that we’ve discussed potential additions, is there anything
there that you don’t think needs to be in the program?”

“No not at all — | think it's looking good. | look forward to seeing the program develop! Good luck.”

Feature List Updates
Following this discussion, the following have been added to the feature list:

¢ News section displaying market news (client)
o News section displaying world news and events (client)

INVESTU — J—H----- 20

Objectives

General Objectives

In general terms, the goal of the project is to create a program that will allow users to trade stocks on the
stock market, with a virtual balance, to aid their understanding and develop their trading strategy and
ultimately increase success rates in the Student Investor Challenge.

Specific Objectives

The following is a list of objectives that the program needs to meet in order to fulfill the criteria set by the
client and the users. These have all been derived from the interviews with the client and user, and from
the feature list.

Objective

¢onoads
¢ajgeinsesiy
éalqeureny
Juens|ay

Create an intuitive interface with easy-to-use controls

Ability to select stocks and view the price info within a 30
second delay of real price

Visualization of price changes of current stock, and ability to
display historic price data

Ability for users to buy and sell stocks using a virtual balance
that is kept up to date.

Ability for users to trade on a private account or on a team
account

Ability for teacher to create teams and observe their progress

Implementation of all secondary features stated in the feature
list, such as a news feed, trade history, alerts system etc.

INVESTU — J—H----- 21

Potential Solutions

There are multiple different ways which the client could solve their problem. The following is a list of

Current Software

The current software used by the students is the actual software that is used in the challenge. This does
have the advantage of being already in place, and of course is the real program being used in the
challenge, but is only accessible during the period of the competition and is made unavailable after the
challenge ends. It is therefore not possible to practice on it before hand or after the challenge ends. The
features of the actual program used are extremely basic and so students waste a lot of time of manually
completing repetitive tasks that could easily be automated, which would avoid students wasting valuable
practice time and allow for faster progression. For this reason, the current software does not meet the
requirements of the client and is therefore not a feasible solution to the problem.

Online Software

Although there are strong candidates for online software that could perhaps be used, there exists a trend
among them that makes them unattractive solutions to the problem; over-complicated interfaces and the
inability to work as a team. Although the current software is too basic, online solutions tend to be at the
opposite end of the spectrum, with hundreds of superfluous features that students don’t need. Online
solutions also only provide stand-alone accounts that cannot link to other accounts to form a team. This
combination of factors means using online software would not provide a realistic enough practice
environment for students. Online solutions are therefore not adequate to solve the problem.

Bespoke Software

Bespoke software is a solution that provides a completely original piece of software that would fulfill the
specific requirements of the client, and would be made by professional programmers. Although this
software will play an important role for the students, it would be difficult to justify the financial cost of
designing it. Furthermore, by contracting programmers from outside the school one runs the risk of facing
communication barriers, which would lead to a costly solution that does not completely fit the design
description. The department does not have the budget for an investment of this size and so for now, it is
not a feasible solution to outsource this project to a software design company.

Visual Basic Solution

A VB solution would still be a bespoke piece of software; however, it would be created in-house and so
would be effectively free. With a solution created internally within the school, it allows for much easier
communication between the client, end-users and the developer, with the added bonus of being
completely free. This means the objectives can be met much more easily and without instructions and
requirements being lost in transmission between the developer and the client, and no financial cost to the
school A solution programmed in Visual Basic would be able to fulfil all the requirements needed by the
client as VB is, despite being basic, able to handle all of the data needed and has the functionality to
easily create the required program.

We can see that the other possible solutions are inadequate to solve the problem set by the client, and
therefore can conclude that a solution programmed in Visual Basic would be the best option to create
software that meets all the requirements set by the client.

INVESTU — J—H----- 22

Advantages of Visual Basic

Visual Basic is an intuitive and easy to understand language and the IDE has been optimized for
rapid application development.

Visual Basic has a built-in section for GUI development, making it easy to design and implement
an effective and intuitive user interface.

Visual Basic has built in features that allow for visualization of data in graph.

Visual Basic has built in features that allow for processing of XML data and data from Access
Databases.

Limitations of Visual Basic

Visual Basic is an object orientated programming language that does not have a mechanism for
handling hanging objects, and as such is prone to memory leakage.

Visual Basic operates sluggishly in comparison to other programming languages, when dealing
with network traffic and high volumes of data.lv

General Limitations for the Project

Due to time constraints, it will not be possible to create feeds for every single index and type of
security — commodities like gold and oil, and other indexes such as NASDAQ and the FTSE 250
will not be able to be traded on. For this reason, the focus will be on the FTSE 100 index.
Google Finance provides data that is usually between 1-15 seconds old, however due to latency
on the school network and processing time required by the program, data may be up to 30
seconds old.

INVESTU — J—H----- 23

Data sources and destinations

This project will need data from multiple sources.

e The first source is Userl (the students/users) who will input information such as their username
and password, stock symbols and quantities, which will be processed by the program.

e The fourth source of information is provided by User2 (the admin/teacher), which is a different
account type that allows for observation of student accounts. The User2 account type can view

create teams, account details and portfolios and adjust balances.

e The third source is the Internet, from which the program will extract stock information based on
the information input by the user.

e The fourth data source will be a database, from which portfolios and user information such as
balance and user ID can be extracted, based on login information provided by the user.

INVESTU — J—H-----

24

Data Input by Userl

Input Process Output Destination
Username Compares Username exists / | Ability to progress to password stage
username with Username does
accounts in not exist.
database then
checks to see if
there exists a
match
Password Assuming If there is a match, | Ability to open the main program if both
username exists in | login is successful | the username and the password match
database, and the main
compares the program opens,
password against | else login is
the password in unsuccessful
the database, and
checks for a match
Select Stock The selected stock | A string of The price of the stock is displayed in

is queried in
database function
to receive an
output string of

information about
the selected stock
is output, which
can then be split

the StockPrice box.

The price of the stock is also mapped
onto a graph.

information into individual
regarding that details of the The name of the company whose stock
stock stock, e.g. price is being queried is displayed in the
StockName box

Buy Quantity Perform a Total price of Output on the ‘Buy’ screen to show the
multiplication of purchase user the amount of money they will
BuyQuantity and spend on a purchase
StockPrice

INVESTU — J—H-----

25

Data Input by User2

Input Process Output Destination

Team Name Queried against The name, team The admin has created a new team
the database to code and balance | that is now stored in the database and

Team Code check if they are inserted into can therefore be joined by users

already exist

Starting Balance

Validated to check
if within the
bounds of
accepted balances

the database and
therefore a new
team is created

Selected Team

Selected Team
name is queried in
the database

All the information
relating to that
team is returned

A display box on the admin page

Data Retrieved from Database

Input

Process

Output

Destination

Query for user info

Query for 24-hour
graph data

Query for all-time
graph data

Query for trade
history

Query for open
positions

Query for alerts

The table relevant
to the query is
searched for the
data relating to the

query

Login details are returned to the
client

Login form

The last 24 hours of data
relating to the queried stock are
returned to the client.

Graph displayed on the
main form

All data relating to the queried
stock are returned to the client

Graph displayed on the
main form

All trade history relating to the
queried account or team is
returned to the client

Trade history section on
the main form

The portfolio relating to the
queried account or team is
returned to the client

Portfolio section on the
main form

All alerts relating to the queried
account or team are returned to
the client

Alerts section on the main
form

INVESTU — J—H-----

26

Data Retrieved from the Internet

Data Source
The data needed for the program will be collected from the Stock Market. Google Finance is one medium

through which this data can be retrieved. Inside Google Sheets, the GOOGLEFINANCE function can be
called to retrieve information about a stock. The syntax for the function is as follows;

GOOGLEFINANCE (“Symbol”, ”"Attribute”)
For example, to retrieve the current price of Barclays shares we can call the price attribute, using the

symbol for Barclays, which is BARC. This is called in the function area for the cell, as shown in the
example below

=GOOGLEFINANCE("BARC.L", "price")

m

A
1| 189.22]

By inputting all the stock symbols for the companies listed in the FTSE 100, and using the attributes
“‘name”, “price” and “change”, we can create a spreadsheet that acts as a live feed for all prices in the
FTSE 100, as well as displaying the full name of the company and the intra-day change in price.

INVESTU — J—H-----

1 Symbol Name Price change
2 |AALL ANGLO AMERICAN 1451.08 -5.42
= |ABFL ASSOCIAT BRIT FOODS 3065.15 -30.85
4 |ADM.L ADMIRAL GROUP 1869.78 -9.22
& |ADN.L ABERDEEN ASSET MGMT 316.33 0
& |AGKL AGGREKO 554 -8
7 ANTOL ANTOFAGASTA 976.79 11.79
s |ASHM.L ASHMORE GRP 367.56 -0.14
o |AVL AVIVA 49833 617
o AZNL ASTRAZENECA 5011.26 -24.74
11 |BAL BAE SYSTEMS 54863 5.13
1z BARC.L BARCLAYS 189.22 0.02
12 BATSL BRIT AMER TOBACCO 504452 -45.48
14 |BLND.L BRIT LAND CO REIT 617.98 248
s |BLTL BHP BILLITON 139578 10.78
18 BNZLL BUNZL 2163.66 b.66
17 |BPL BP 497.82 352
12 |BRBY.L BURBERRY GROUP 1751.65 -9.35
12 |BT-AL BT GROUP 249.98 448
20 |CCLL CARNMNAL 5010.08 0.08
21 |CNAL CENTRICA 163.38 3.18
2z |CPGL COMPASS GROUP 1528.56 -9.44
22 |CPIL CAPITA 47717 727
24 |CRDAL CRODAINTLPLC 427519 -44.81
28 |CRHL CRHPLC 264575 -27.25
28 |DGEL DIAGEOQ 2581.5 -19.5
27 |[EMGL IMAN GROUP 195.68 -0.62
22 |EVRL EVRAZ 294.41 11.21
20 |EXPNL EXPERIAN 1552.9 29
30 |FRES.L FRESNILLO 1347.55 5455
3 |GFSL G4S 260.86 0.86
3z |GKNL GKN 30477 1.77
32 |GLEN.L GLENCORE INTL 363.5 1.4
34 |GSKL GLAXOSMITHKLINE 1300.58 -2.42

35

This spreadsheet will be the main source of the data for the real-time section of the program, which
displays a live feed of the prices of the stocks.

INVESTU — J—H----

Visual Basic supports XML, so to retrieve the data, we must can pull it from the document by converting
the document into an XML-based RSS feed. For this to work, we need to publish the document;

Copy of FTSE Feed i

File Edit WView Insert Format
Share... r £
ﬁ\ Mew -
1 E Cpen... Ctrl+0
- ,: Rename. ..
. Make a copy... BRIT
'
Maove to...
., sROUP
. W Move to trash 1
T MT
g | Import...
7|
g |4 Version history = 8T
=R INES
1l:| ” nnurn|n':r"| e h RP
1M1 |4
1z |4 Publish to the web. .. ECA
:i E eSO Mo
- Email as attachment... !
-l
16 f)
- Document details... co
t Spreadsheet settings. ..
13 | _ . ON
1w || = Print Ctrl+P
20 R nE

INVESTU — J—H----

Data

Ya

Price

Tools Add-ons Help

.0_ .09 123 -

1451.08

3066.15
1869.78

3633
854

HNIA b

976.79
0
367.56
498.33
5011.26
54863
188.22

5044 52
0

617.98
1395.78
2163.66

4497 /2

Last edit was !

Arial - 10

change
542

-30.85
-9.22

ENIA b
1179

ENIA b
-0.14

£.17
2474

513

0.02

45 45
EN/A b

248
10.75
5.66
3R2

29

Once the document is published, it can act as an RSS feed. Using a query link, we can query the
document for information;

https://spreadsheets.google.com/feeds/1list/1LI2C05008hTSf fglULoKldpKaeluJWhD
WiLR1v9yaE/1l/public/basic?sg=symbol=BARC.L

This link has the symbol “BARC.L” appended to the end, and so will return the information for Barclays
stock prices, in XML format:

< C {} | & Secure | https://spreadsheets.google.com/feeds/list/1L12Co5008nT5f fglUloK.. % | O W © :

<?xml version="1.8" encoding="UTF-8'?»<feed xmlns="http://ww.w3.0rg/2085/Atom"
xmlns:openSearch="http://a9.com/-/spec/opensearchrss/1.8/"
xmlns:gsx="http://schemas.google.com/spreadsheets/2006/extended ">

<idshttps://spreadshests. poogle. com/feeds/1ict /11 T2Ca50aB8hTST_fglUlokldpKaslulWhDWil R1v9yaE /1, /public /basice/id>
<updated»>2@17-11-22T722:38:39.455Z</updated><category scheme='http://schemas.google.com/spreadsheets/2086"
terms"http://schemas . .google, com/spreadshests/2006811ist" /r<title types'text'»FTSE188</title><link
rel="alternate’ type='application/atom+xml’
href="https://docs.google.com/spreadsheets/d/1LI2Co5808hTST_fglULoK1ldpKaeluIWhDWiLR1v3yaE/pubhtml’ /><link
rel="http://schemas.google.com/g/2005#feed” type="application/atomtxml”
href="https://spreadsheets.google.com/feeds/list/1LI12Co5B0BhTST_fglULoKldpKaelulWhDiLR1vGyaE, 1/ public/basic' />
<link rel="http://schemas.google.com/g/20@5#post’ type='application/atomtxml’
href="https://spreadsheets.google.com/feeds/list/11 I12Co500BhTST_fglULoKldpKaslulWhDiLR1vSyaE, 1/ public/basic' />
<link rel='self' type='application/atom+xml’
href="https://spreadsheets.google.com/feeds/list/1LI12Co5808hTSF
squsymbo¥3DBARC. L " /»<author><name>joehewettld/namer<email »joe
<opensearch:totalResults»l</openSearch:totalResults><openSeay
<idrhttps://spreadsheets. google.com/feeds/1list/ILI2Co5@08hT,
F<!1d><updated>2&1? 11-22T22:38:39.4552<¢/ updated)(categor

1ULoK1dpKaeluJWhDWiLR1vSyaE/1/public/basic?
wettl@gmail . com</email»</author>
:startIndex>l</openSearch:startIndex><entry>
_fglULoK1dpKaeluIWhDWiLR1v9yaE/1/public/basic/cu?6
scheme="http://schemas.google.com/spreadsheets/2006"
- »<title type="text':>BARC.L</titlex<content

: 8.824/content»<link rel='self" type='application/atom+xml’
B5008hTSf_fglULeKldpKaelulWhDWiLR1vOyaE/1/public/basic/cu

h|ef https,
76f" /></ ent|f><ﬁfeed>

Inside this XML is the information we’ll need in the program. This XML is structured and so it will be easy
to sort through and extract the relevant information using Visual Basic.

Data Destination
The data retrieved from the internet will end up in two locations:

1) Database — The stock data will be recorded into the database roughly every minute to
keep a record of the history of each stocks price, so that graphs can be plotted.

2) Simulation — The stock data for a certain stock will need to go directly into the program
when a user selects that stock. It could be argued that this is unnecessary as the up-to-
date data is already being sent to the database and so the latest entry for the selected
stock could just be selected and displayed directly from the database. However, by
fetching it directly from the internet it will avoid making an unnecessary connection to the
database and avoids complications that may arise from database connection errors, out
of date database data and server crashes.

INVESTU — J—H----- 30

https://spreadsheets.google.com/feeds/list/1LI2Co50o8hTSf_fg1ULoK1dpKae1uJWhDWiLRlv9yaE/1/public/basic?sq=symbol=BARC.L
https://spreadsheets.google.com/feeds/list/1LI2Co50o8hTSf_fg1ULoK1dpKae1uJWhDWiLRlv9yaE/1/public/basic?sq=symbol=BARC.L

Data volumes

Volumes of Data Input by User

Variable Names

Data Type

Data Size

Description of Data

Username

String

Up to 32 bytes

The username will be a
string with a limit of 16
characters

Password

String

Up to 32 bytes

The password will be a
string with a limit of 16
characters

BuyQuantity

Integer

Up to 12 bytes

An integer up to
100,000

SelectedStock

String

Up to 12 bytes

A string determining the
stock to query — stock
symbols are between 4
and 6 characters

BuyComment

String

Up to 512 bytes

A short comment up to
256 characters

Volumes of Data Retrieved by Program

Data Data Type Data Size Description of Data
Stock XML of a specific | String 1954 bytes The raw XML data
stock retrieved from the
Google Sheets file via
an RSS feed
Extracted string from String Between 32 and 64 From the raw data, the

the XML

bytes

string of relevant
information can be
extracted. The size of
this data varies
depending on the length
of the company name
and the value of the
stock

INVESTU — J—H-----

31

Last 24 hours of price
data for a specific stock

Array of Integers

Between 3-6 Bytes for
each integer, with 450
minutes in a trading
day. Therefore between
1350 and 2700 kb for
each stock.

There are 450 minutes
between 9:00am and
4:30pm, and the price
will be recorded into a
database for each
minute. Therefore, when
retrieving the data for
the last 24 hours of
trading there will be up
to 2700 kb per stock

INVESTU — J—H-----

32

Proposed solution

Flowchart for Proposed Solution

Load User Info
2. Balance,
Portfolio

START

Load stock details

Inpuit Caze

1) Buy
2) Sell

Update balance and
add new position o -
list of open positions

Error
Invalid Quantity

Update balance and
remaove stock from »>
open positions

valid
Selection?,

M

1) Real time
2) 24h data
3) Historic datg

isplay graph with) .
Error Display graph data from Last 24 Display graph with

Invalid Case real time data historic data

hours

INVESTU — J—H----- 33

Design

General Plan

The aim of the project is to create a program that a teacher can create a team on, then invite students to
join their team. Students should then be able to create an account using this team invite, and then login to
their account. Once logged on, the students should be able to buy and sell stock using their virtual
balance, with the program providing information to help users to judge their trading decisions.

The program will have a database that stores all the data needed, such as account information and the
latest stock data.

To fetch the stock data even when the program is not running, there will need to be a secondary program,
which will need to be run 24/7 on a server so that it is able to fetch constant price updates.

Feature List

To break this down further, the following is a feature list of all the features that will be included in the
program. All of these features are derived from the interviews with the client (client) and user (user), or
from researching the Student Investor Challenge software (SIC).

e Ability to create and login to accounts (client)

¢ Ability to join and trade on a team account (client)

e Ability for users to be designated as admins (client)

e Ability for admins to view teams list (inferred from client)

e Ability for admins to view team details and progress (inferred from client)

e Ability to view real-time information for all FTSE 100 stocks (client and user)

e Ability to select an amount of stocks and buy that amount using an up to date virtual balance, at
real current price (client/user)

e Display for all stocks currently held in portfolio (client/SIC)

e Ability to sell stocks in portfolio at real current price (client)

e Graphs to display current day price trends of all stocks (user)

e Graph to show all time price changes of all stocks (inferred from user)

¢ Ability to create price alerts and be notified when stock reaches current price (inferred from user)

¢ Interface allowing users to see all current alerts on their account (inferred from user)

e Interface allowing user to see entire trade history (SIC)

¢ Interface allowing user to see all stocks in the FTSE 100 in a single screen, with details such as
price (SIC)

o Notes section displayed in trade history and portfolio with reasons for trade decision (user)

e News section displaying market news (client)
¢ News section displaying world news and events (client)

INVESTU — J—H----- 35

System Design

From the general plan we can see that there are 5 main forms that are needed:

e LoginForm — the first form shown to users. From here users can login to their account, or create
a new account

e SignUpForm — this form should allow users to create a new account that can then be logged in
to. They must be able to link their account to a team here.

e AdminViewForm — this form should be used by teachers, and should provide an overview of all
of the teams that they have created, showing details about the progress of each team and the
details of each user in each team. AdminView should also allow for creation of new teams.

e MainForm — the main form should be the heart of the program and will contain most of the core
functionality of the program. Features should include the ability to buy and sell stocks, an
overview of a students or teams portfolio, live feeds for the latest stock prices and news, the
users trade history, and the ability to create alerts for stock prices.

e BuyForm — from the main form, the user should be able to buy stocks, once they have chosen a
stock to invest in. This should open a new form called BuyForm, which should allow users to view
the name and price of the stock they are investing in, and to select the quantity they wish to buy.

Program Flowchart

The flowchart shows the flow of the forms, and the sequence in which they are loaded and viewed by the
user. The normal program sequence would be LoginForm -> MainForm -> End, with AdminForm,
SignUpForm and BuyForm all being optional interfaces for already-registered users.

START

[’ h 4 1

AdminForm] LoginForm » SignUpForm
(¥
BuyForm € MainForm

INVESTU — J—H----- 36

Data Flow

The following table shows the data flow within the program. Each form will have data being input into it,
and will have to process that data to create an output. This table details those inputs, processes and

outputs specifically.

Form Name Input Process Output
LoginForm Username (str), | When the user clicks the login If LoginSuccess is true, then the
Password (str), button, the program will query user is shown the main form.
TeamMode the database twice: Firstly, the | The Boolean TeamMode will be
(bool) program will scan all set to true or false depending
usernames in the database to on the Boolean in the
check for a match with the input | LoginForm.
username. Secondly, if a
username maitch is found, then | |f LoginSuccess is false, then
a query of the password related | access is rejected.
to the stored username is
performed. If this password
matches the password input by
the user, then a Boolean
LoginSuccess will be set to
true.
SignUpForm Username (str) Firstly, the username will be If the username already exists,

Password (str)

Email (str)

TeamCode (str)

gueried in the database, to
check if that username already
exists.

the sign up is rejected. If it

doesn’t exist, then an account is
inserted as a new entry into the
accounts table of the database.

AdminViewForm

TeamName (str)

TeamCode (str)

StartingBalance

(int)

When ‘Create New Team’ is
clicked, a validation check will
be carried out on TeamName
and TeamCode, to check there
does not exist a team with
these details already. Then a
connection to the database is
opened and the data is inserted
into the respective columns.

If validation is successful, a new
team is created in the database.

MainForm

SelectedStock
(str)

When the user selects a stock,
the program will fetch the
current data for that stock, and

The current data will be
displayed in textboxes, such as
‘Price’ and ‘Change’ and the

INVESTU — J—H-----

37

also the historic data of that
particular stock.

historic data will be displayed in
graphs to show the price trends
of the last 24 hours.

BuyForm

Quantity (int)

Note (str)

In the Buy form, the user can
select the quantity they want to
buy, of the currently selected
stock. This is multiplied by the
current price.

The result of the price multiplied
by quantity will be output in a
textbox. When the buy is
confirmed, the quantity and total
price, as well as other details
about the buy will be displayed
in a textbox called
‘OpenPositions’, showing all of
the current open positions of the
user. The details will also be
inserted into the database, so
that they can be loaded when
the user logs back in again.

INVESTU — J—H-----

38

500 px

Form Layout Designs

The visual aspect of the program is very important, as can be seen in the objectives derived from the
interviews with the user and client. It is therefore important that the GUI is thought of and laid out carefully,
in order to create an intuitive and easy to use interface that makes the user experience simple and
enjoyable. The following are mock designs of the forms that will be discussed with the client and end
users in order to discover which design is most suitable for this project. All mock-ups were created in
Photoshop, employing the grid tool for spacing and alignment purposes.

Main Form

A

© o NG A~ ®WDNPE

el N ol =
o Uh WNEREO

INVESTU — J—H----

A
400 px
A\
|
1050 px
< > ‘ g o
340 px 650 px
Input box for stock symbol
Users / Teams current balance
Full company name that corresponds to the stock symbol selected by the user
Price of 1 share in the currently selected company
Intraday change of the currently selected share
Intraday volatility of the currently selected stock
Buy button to open BuyForm
Alert price input box for the currently selected stock
CreateAlert button to create an alert at the price set in 8 for the currently selected stock
. OpenPositions textbox that displays all currently open positions
. ClosePaosition button that closes the currently selected position in the OpenPositions textbox
. Tabl — displays 24-hour price history graph in 16 for currently selected stock
. Tab2 — displays all-time price history graph in 16 for currently selected stock
. Tab3 — displays market news for the FTSE100 in 16
. Tab4 — displays all alerts currently active for the user/team logged in
. Displays the currently selected tab — when one tab is selected, all content from other tabs is
hidden
39

Buy Form

1. Company name A
2. Current price per share of currently selected
stock
3. Atrack bar to allow users to select the
guantity they wish to buy
4. Output of the track bar — a numeric value of
how many shares the user has selected to
buy
5. Price of total purchase — calculated using 370 px
number in 2 multiplied by number in 4
6. Notes section in which users can write
comments detailing any useful information
regarding the buy
7. Buy button
Y
< >
310 px
< >
250 px
Login Form
1. Username box for existing users to A
enter their username into
2. Password box for existing users to
enter their password into I N V E S I | |
3. Login button to login to the program
and proceed to the main form
4. Cancel button to close the program _ 350 px
5. Informative text regarding signing up 5
6. Sign up button which loads the sign _
o -
Y
¢ >
400 px
‘
‘ 140 px 140 px

INVESTU — J—H----

40

Sign-Up Form

1.

n

w

B

o

o

Useful information regarding how to
use team codes

Username box for new users to enter
their desired username into
Username box for new users to enter
their desired password into

Email box for new users to enter their
email into, for verification purposes
and for use when sending alerts
Team code box for new users to
enter the team code they have been
provided, in order to be assigned to a
team

Sign up button to create an account
using the details provided in boxes 2-
5.

Admin View Form

A

280 px

INVESTU — J—H----

A
INVESTU - [
1 I | | ™
Y
400 px >
‘ 115 px ‘ 200 px
A
570 px
v
-
-
480 px
41

1. Teams box — all teams created by this admin are displayed in a textbox here

2. Team Name for new team creation — this will be the name of the new team being created

3. Sign up code for new team creation — this will be the code used by users to join the team about to
be created

4. Starting balance — this is where the balance that the team will start with is set

Useful information regarding team creation

6. CreateNewTeam button — this inserts the new team into the database and from then on students
with the sign up code will be able to join it

o

INVESTU — J—H----- 42

Database Design

It is clear that a database is necessary for this program to run, both for the login system and for the ability
to remember data between logins, and across multiple accounts. To create a database, we first need to
detail each table and the data that it will hold, and then draw relationships between the tables.

Normalisation

To create an efficient database, we must use database normalisation, the goal of which is to “create a set
of relational tables with minimum amount of redundant data that can be consistently and correctly
modified”. Normalisation comes many different forms. The form we will be applying is 3¢ Normal Form.
However, because each stage of normalisation depends on the previous stage, we must first start at 1t
Normal Form, and move upwards

1st Normal Form
1INF dictates that all attributes in tables within the database must be atomic data. That is, there cannot be
field that holds two values. Each field name must be unique and there must also be no repeated data.

2" Normal Form

A database that is in 2NF must be in 1NF, but with an additional rule. The additional rule is that no non-
prime attribute is dependent on a key within the table. That is, if an attribute is a subset of the key, then it
should not be stored in a table.

3" Normal Form

A table is in 3NF if it is first in 2NF, and then for every dependency, either the dependent variable is a
super key of the table, or the thing that is being depended on is a prime attribute of the table. Another way
of saying this, is that 3NF requires there be no non-key attributes that depend on other non-key attributes.

Following these rules of normalisation will lead to an efficient and compact database that can be queried
quickly, allowing the program to run as smoothly and fast as possible.

INVESTU — J—H----- 43

Tables
From the feature list derived from researching stock market simulators and the interview with the client

and user, we can extract the information we need to structure a database for the program. The tables will
be as follows;

© o NGk wDdPRE

tblUserInfo — for storing account information
tbITeams — for storing information about teams

tbITeamUsers — a link table storing all of the users in each team

tbiStockDetails — contains all of the information of the stocks in the FTSE 100
tbiStockPriceHistory — contains the price history of every stock
tbiTradeHistory — a log of all trades made on the program

tblAlerts — contains information of all alerts currently set in the program

tblOpenPosition — contains information of all open positions currently in the program

tbiCrash — a log of all crashes that occur in the program, for debugging purposes

Entity Relationship Diagram

tbiCrash tbiTradeHistory|
thITeams }— tbITeamUsers % tblUserInfo % thlAlerts >—tb|8tockDetails% PrEEleslj(?sﬁgry
\ tblIOpen %
Positions
INVESTU — J—H----- 44

Tables — Breakdown

tblUserInfo

AccountID Username Passwrd Balance Admin TeamName Email

tblUserInfo — This will be one of the most vital tables and will be used by the program when logging in.
This table will store all of the users information, including their login details, balance and team ID. Their
login details will be used to validate a login attempt, after which their balance will be loaded to allow them
to continue to trade. If the user runs the program in team mode, then the team ID will be used to identify
which team they are in, and then allow them to login to the account of the correct team.

tblITeams

TeamID TeamName UserTeamsID Balance

tbITeams — This will contain information about teams, including their unique Team ID, set by the admin,
which will be used by users to join the team and to uniquely identify the team. There will a link table
linking to tbiITeamUsers which will store the ID of the team members. If there are less than 4 entries in the
link table that have a specific TeamID, then the program will know that the team is not full and users will
be allowed to join. The balance works the same way as a user balance, with the exception that the team
balance is shared between up to 4 accounts, whereas the user balance can only be affected by that user
when they’re logged into single user mode.

tbITeamUsers

TeamID AccountlD

tbITeamUsers — This table is a link table that links up to 4 accounts to a team. Every time a user joins a
team, an entry will be made into this table linking the AccountID of the user to the TeamID of the team
they are trying to join. Before this is done, however, the program must scan the database to find out how
many users are already assigned to that team. If there are less than 4, then the user will be allowed to
join the team.

INVESTU — J—H----- 45

tblOpenPositions

PositionID | AccountlD | StockSymbol | StockQuantity | BuyPrice | TradeDate

tblOpenPositions — This table will contain information regarding positions that are currently open on each
users account. The table will contain every open position, regardless of whether it was made by a user or
a team. The positions will be tied to each account through the AccountID, and to teams through the
TeamName column, which, if the position was opened in team mode, will contain the team name, or if it
was opened by a user on single user mode, will contain nothing.

tbiTradeHistory

TradelD AccountID | StockSymbol | StockQty | TradePrice | BuyOrSell | TeamName | Date

tbiTradeHistory — This table will be updated every time a buy or sell action takes place. It includes the
AccountID of the user that made the trade, and all the relevant information related to the trade, such as
quantity and price. Because both buy and sell trades are stored, there is a column called BuyOrSell that
can be used to differentiate buy and sell trades at a later date. This information will all be presented to the
user so they can review their trade history.

tblStockPriceHistory

PricelD StockSymbol StockPrice FetchDate

tblStockPriceHistory — In order for the 24hr graph to function, the program needs historic data to read
from, which it can then plot into a graph and display to the user. This table stores this data, which will be
created by an additional program that will run 24/7 on a server. The table will contain the stock symbol,
current price, and the date at which the price was taken. Using this data, the program will be able to fetch
all entries where the stock symbol is the symbol of the company that the user is interested in investing in,
and then use the price and date of each entry to plot a graph.

INVESTU — J—H----- 46

tblStockDetails

StockSymbol

StockName

MarketSector

Price

Change

tbIStockDetails — One feature of the program will be list, similar to that in the Student Investor program,
that shows the symbol, name, market sector, price and change of each stock, in one scrollable box. The
content for that box will be sourced from this table, which will be updated continuously with the latest
prices by the additional program running on a server.

tblAlerts

AlertID

AccountID

StockSymbol AlertPrice

TeamName

upOrDown

tblAlerts — When the player sets an alert, they may log off their account before the price gets to the alert
price, and so they will have no way of knowing whether the stock they were interested in has passed said
price. For this reason, alerts need to be stored in the database so that they can be processed even when
the program is closed. Alert processing will take place on the additional program on the server.

INVESTU — J—H-----

a7

SQL Queries

Now that the list of table has been created, we can begin to plan the SQL Queries that will be needed and
the interactions between tables that will happen. This may be useful to refer back to during development.
This list is by no means exhaustive and only contains the most important queries that will definitely be
made. There could arise unexpected queries in future that will need to be added.

Form Query Name SQL Related Table Description
Query
Type

LoginFor CheckUserNa | SELECT | tblUserInfo When a sign in attempt is made, this query will be used to

m meExists check if there is a username is the table that matches the
username entered by the user.

LoginFor LoginSuccess | SELECT | tblUserinfo Once it is known that there exists a user with the given

m username, the details of that user must be pulled from the
database so that the password can be checked for a match.
It will also then be important to know whether the user is an
admin or a student, and what team they are in.

AdminVie | FetchTeams SELECT | tbITeams When admin view is loaded, the admin will need to know all

w of the teams that they had. For this, a query is needed to
select the teams and all of their information from the
database, so that they can be displayed for the admin to
see.

AdminVie | ValidateNewT | SELECT | tblTeams The admin is going to have the ability to create teams. This

w eam means there has to be a validation check to make sure the
team name and team code are unique. This query will
select every team name and team code and then scan
through each one, checking if it matches the new team
name/code. If there is a match, then the new team
name/code is invalid.

AdminVie | CreateNewTe | INSERT | tblTeams If the new team information is validated, then a new team

w am can be created. This means all of the details have to be
inserted into the database, which will be done by this query.

AdminVie | FetchTeamiInf | SELECT | tblTeams Part of the AdminView part of the program is for admins to

w 0 - Teaminfo be able to see the progress of their teams. From the list of

teams loaded with the FetchTeams query, they should then
be able to view individual details of these teams. This will
be done by the FetchTeamInfo query, which selects all of
the currently selected teams information from the database

INVESTU — J—H-----

48

and displays it.

AdminVie | FetchTeamiInf | SELECT | tblUserInfo This query is also part of the FetchTeamInfo part of
w 0 - Userlinfo AdminView, in which all of the teams info will be displayed
for the admin to see. A query will be needed to select all of
users in the team and their information, so that the admin
can monitor the team members and their details.
SignUpFo | ValidateTeam | SELECT | tbiTeaminfo Similar to the validation in the AdminView, this query will
rm Code also be used for validation. Before the user can sign up, the
program will have to check the team code is valid, by
making sure it does not already exist.
SignUpFo | ValidateUsern | SELECT | tblUserInfo This query will also be used for validation. Before the user
rm ameTeamCod can sign up, the program will have to check the username
e is not already taken, and that the team code selected is
available
SignUpFo | CreateNewAc | INSERT | tblUserInfo With all of the details given by the user, a new account can
rm count be inserted into the database.
SignUpFo | CheckSpaceln | SELECT | thiITeams The teams will only have a maximum of 4 spaces available,
rm Team so if a user tries to sign up to a team with 4 players already
in, an error must be returned. In order to do this, the content
of the team must be retrieved and scanned to check if an
empty slot exists.
SignUpFo | AddNewPlaye | UPDATE | tbiITeams With the AccountID, the new account can be added to the
rm rToTeam team. This will be useful when a query is run about the
team, for example, when finding out how many players are
currently in a team.
MainForm | FetchAlerts SELECT | tblAlerts When the program is loaded, all of the users/teams
information needs to be loaded so that they can continue
FetchTradeHis thiTradeHistory | from where they left off.
tory
tblUserInfo
FetchBalance
tblOpenPositio
FetchOpenPo ns
sitions
MainForm SELECT | tbIStockDetails | One feature of the program is a grid showing all 100 stocks

LoadDetailsGr
id

and their prices. The data for this is stored in the database
and regularly updated, and so to get it into the program a

INVESTU — J—H-----

49

query is needed.

MainForm | Plot24hrData | SELECT | tbIStockPrices | When the program is run, graphs will be plotted. The data
for this will be collected when the program is not running
and so must be loaded upon loading the program.

MainForm | UpdateBalanc | UPDATE | tblUserInfo When a position is closed (a stock is sold) the users

e balance needs to be updated, not only on the program but
also in the database. This requires and update query to
alter the balance in the Userinfo table.

MainForm | ClosePosition | DELETE | tblOpenPositio | When the position is closed, the database needs to be

ns updated, so that the user no longer owns those shares.
MainForm | StoreNewTrad | INSERT | tbiTradeHistory | When a position is closed, this counts as a trade being
e made and so it has to be stored into the trade history table,
so the user has an accurate picture of the entirety of their
buy/sell history.

MainForm | CreateNewAle | INSERT | tblAlerts Part of the main form GUI will be a section for users to

rt create alerts. These alerts must be stored so that they can
be monitored externally, and also so they can be displayed
at a later date for the user to see.

UpdateTeamB | UPDATE | thITeams If the user is on a team account, the balance affected when

alance they make a trade, is the team balance, and therefore there
needs to be different queries depending on whether the
program is running in team mode or not.

UpdateUserBa | UPDATE | tblUserInfo This query will update the user balance when a trade is

lance made, however it will only be run if the program is not
running in team mode.

CreateNewOp | INSERT | tblOpenPositio | When a buy is confirmed, the database needs to be

enPosition ns updated with the new open position, so that it can be
remembered and reloaded when the program is reopened.

CreateNewTra | INSERT | tbiTradeHistory | When a buy is confirmed, the database needs to be

deHistory updated with the new trade so that when trade history is

loaded later, it can be added to the history.

INVESTU — J—H-----

50

Pseudo Code for Forms

Login Form — Pseudo Code

When user clicks Login button
Connect to database

If (SELECT Username, AccountID FROM tblUserInfo WHERE Username =
UsernameBox.text AND Password = PasswordBox.text) returns 1 reply Then

AccountID = SQLReply.AccountID

UserValid = True

If UserValid Then
SELECT * FROM tblInfo, tblTeams, tblUserInfo
WHERE tblTeams.TeamID = tblUserTeams.TeamlD
AND tblUserTeams.AccountID = tblUserInfo.AccountID
AND tblUserInfo.AccountID = AccountID

If Admin Then
Show AdminViewForm

Else
Load AccountID, Username, TeamName, Balance, Email into
MainForm
Show MainForm
Else
Error
End If

Disconnect from database

End

INVESTU — J—H----

AdminViewForm — Pseudo Code

Connect to database

SELECT TeamName, TeamID FROM tblTeams

Load TeamName, TeamID into TeamsList

Display all items in TeamsList into TeamsListBox
Disconnect from database

When Admin selects team from TeamsListBox

Connect to database

SelectedTeamID = TeamsList (TeamsListBox.selectedIndex) .TeamID

SELECT All information relating to selected team FROM
tblOpenPositions, tblTradeHistory, tblTeams, tblTeamUsers,
tblUserInfo WHERE tblTeams.TeamID = SelectedTeamlID

Add all relevant team information to a display box

Disconnect from Database

When admin clicks CreateNewTeam button

Connect to database

If (SELECT * FROM tblTeams WHERE teamName=’teamnamebox.text’ OR

teamCode=’" teamCodeBox.text’) returns 1 reply Then

Msgbox (“Invalid team code or team name”)

Else

INSERT INTO tblTeams TeamName, TeamCode VALUES
TeamCodeBox.text)

End If

Disconnect from database

INVESTU — J—H----

(TeamNameBox.text,

52

SignUpForm — Pseudo Code

When user clicks SignUp button
Connect to database

If (SELECT * FROM tblUserInfo WHERE Username=’UsernameBox.text’)
returns 1 reply OR PasswordBox.text doesn’t contain (at least 1 number
and more than 8 characters) Then

Msgbox (“You’ve chosen an invalid username or password.”)
Else

INSERT INTO tblUserInfo Username, Password VALUES

(‘UsernameBox.text’, ‘PasswordBox.text’)

End If

INVESTU — J—H----

53

MainForm — Pseudo Code

When the user logs on
Determine whether the use is in TeamMode
Load World News
Load Market News
Load Trade History
Load Alerts

When the user selects a stock symbol
PriceBox.text = FetchStockPrice (StockSymbol)
NameBox.text = FetchStockName (StockSymbol)
ChangeBox.text = FetchStockChange (StockSymbol)

Plot24hrData (StockSymbol)

Sub FetchStock (Price/Name/Change) (byval StockSymbol)
Query Google Sheets document for XML data of (StockSymbol)
Create node list of XML
Find node containing (Price/Name/Change)
Return contents of node
End sub

Sub Load (Market/World)News
Retrieve XML data from News RSS feed
Split into nodes
Add content of nodes to string and format
Display formatted string in news display

End sub

Sub LoadTradeHistory
Connect to database

If TeamMode = True then
SELECT * From tblTradeHistory WHERE
tblTradeHistory.TeamName='TeamName’
Else
SELECT * From tblTradeHistory WHERE tblTradeHistory.TeamName=’0’
AND tblTradeHistory.AccountID=’'AccountID’

Display retrieved database in data grid view
End sub

Sub LoadAlerts
Connect to database

INVESTU — J—H---- 54

SELECT * From tblAlerts WHERE tblAlerts.AccountID=’AccountID’
Display retrieved data in data grid view

End sub

When user selects a position and clicks ‘Sell’
Balance = Balance + (Current price of stock * gquantity owned)

Connect to database

INSERT INTO tblHistory (StockSymbol, Price, Quantity, Date) VALUES

(‘StockSymbol’,’Price’,’Quantity’,’DateTime.Now’)

DELETE * FROM tblOpenPositions WHERE
PositionID='0OpenPositions (CurrentlySelectedOpenPosition.UniquelID)

Sub Plot24hrData
SELECT * FROM tblStockPriceHistory WHERE
StockSymbol=’CurrentlySelectedSymbol’ AND FetchData >= Date.Today

For Each Entry retrieved from database
Add a new point to the graph with X=Price, Y=Date
Next
End su

BuyForm — Pseudo Code

When user clicks Buy button

Price = MainForm.Price
Quantity = QuantityBox.text
SelectedStock = MainForm.SelectedStock

TotalPrice = Price * Quantity

If Balance > TotalPrice Then
INSERT INTO tblOpenPositions, tblTradeHistory
(tblOpenPositions.StockSymbol, tblOpenPositions.StockQuantity,
tblOpenPositons.StockPrice, tblTradeHistory.StockSymbol,
tblTradeHistory.TradePrice, tblTradeHistory.BuyOrSell VALUES
(‘SelectedStock’,Quantity,Price,’SelectedStock’,Quantity,’Buy’)
Else
Msgbox (“Not enough money”)

INVESTU — J—H----

Develop
ment 1

MainForm — Investu - Development 1

The first development of the program neglects the account system and does not have all of the features
laid out in the design. The purpose of this development is to get the main part of the program functioning,
the ability to read stock data and display it for the user, in the form of a graph.

Global Variables — MainForm - Investu Development 1

Public Class MainForm

Public Balance As Decimal = 100000000

Public StockInfo As String = ""

Public OpenPositions As New List(Of StockAttributes)

Public TimerInterval As Integer = 5000

Public symbol() As String = {"RR.L", "AV.L", "BARC.L", "GSK.L", "TSCO.L",
"GLEN.L", "HSBA.L", "ITV.L", "BA.L", "ADN.L"}

Public s As New Series

Dim OpenPositionIdentifier As Integer = ©

There are a number of global variables that will need to be removed and declared locally, however for the
purposes of the first version they will be declared globally.

Dim Balance As Integer = 100000000

The very first variable declared is balance, which is a count of the users’ money in pence, which they
currently have available to buy shares. The balance will be affected when a buy is confirmed and when
stocks held in the users’ portfolio are sold. In future versions, this variable will have a value that is loaded
in from the database, where the balance reflects that of the currently logged in user. For this version, the
balance is fixed and will reset to 100,000,000 pence every time the program is run.

Dim OpenPositions As New List(Of StockAttributes)

OpenPositions is built from the class StockAttributes, and will hold the information of all open positions
currently held by the user. These will make up the users portfolio.

Public Class StockAttributes

INVESTU — J—H----- 57

Public stockSymbol As String
Public stockName As String
Public stockValue As Decimal
Public stockQuantity As Integer

End Class

StockAttributes is a class containing attributes related to stocks. Each stock has a StockName, (e.g.
BARCLAYS), a StockSymbol (4 letters with ‘..’ appended e.g. ‘BARC.L’), and a value, which is measured
in pence and changes regularly. StockQuantity would hold the quantity of shares that the user holds.

Dim TimerInterval As Integer = 5000

The program will operate around a timer which executes code every 5 seconds. The more frequent this
timer ticks, the more up to date the stock information will be. More up-to-date the stock information is, the
more accurate the simulation will be, as the share prices users are trading with will be closer to reality.
Ideally, this would be set to 1000, to cause the price to update every second, however a request for
information from the internet usually takes more than a second. If the timer was set to 1 second, a stack
overflow error would eventually occur. For this reason, the timer is set to 5 seconds.

Dim Symbols() As String = {"RR.L", "AV.L", "BARC.L", "GSK.L", "TSCO.L", "GLEN.L",
"HSBA.L", "ITV.L", "BA.L"}

This array of strings is responsible for holding the Stock Symbols for the stocks that can be traded in the
program. The FTSE 100 has 100 companies; however, this list only shows 10 symbols for the purposes
of creating a working solution. Later, the symbols will be read in from a text file instead of being stored in
the program, and the whole list of 100 stocks will be included.

Dim Seriesl As New Series

A series is VB is a line displayed on a graph. This series will hold the X and Y co-ordinates of each point
relating to the price of the data. It is called ‘Series1’ as in future, there may be a ‘Series2/3/4/5’ depending
on which variable attributes of each stock need to be measured and displayed. Having multiple series
allows for multiple lines to be displayed on one graph, which can help with visualization.

Dim StockInfo As String

The nature of how data is going to be retrieved means that stock information will enter the program as
XML data, and will need to be processed. Once it is processed, there will be a string containing all of the
information. This string will need processing further to extract each individual piece of information. This
composite string, before it is processed, will be stored as StockInfo. StockiInfo can then be passed to
functions that specialize in splitting this string down into its component parts.

INVESTU — J—H----- 58

MainForm_Load — MainForm - Investu Development 1

Private Sub MainForm_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

BalanceBox.Text = "£" & Balance / 100

For L = @ To StockDetails.Count - 1
SelectStockComboBox.Items.Add(StockDetails(L).stockSymbol)

Next

UpdateIntervalComboBox.SelectedItem = "5"

GraphScaleComboBox.SelectedItem = "3"

CreateChart()
End Sub

When the MainForm loads, this code executes. The program itself is based on which stock is selected,
and there is currently no stock selected, so there is no significant code to run yet — this happens when the
user chooses the stock symbol they’d like to look into.

BalanceBox.Text = "£" & Balance / 100
This takes the balance declared earlier and divides it by 100, to exchange it from pence to pounds. The

user can no see their balance in an easy to understand format.

For L = @ To Symbols.count - 1
SelectStockComboBox.Items.Add(Symbols(1l))
Next

The program will have a drop-down box containing all of the companies in the FTSE 100. From this list,
the user can select the stop they wish to view, which will bring up information like graphs and price data.
This for-loop populates the drop-down box with every item in the symbols array.

CreateChart()

CreateChart() is asub-routine that prepares the graph section of the program, ready for data to be added
upon selection of a stock.

INVESTU — J—H----- 59

CreateChart — MainForm - Investu Development 1

Sub CreateChart()

Seriesl.Name = SelectStockComboBox.SelectedItem
Seriesl.ChartType = SeriesChartType.Line
Seriesl.BorderWidth = 4

Seriesl.XValueType = ChartValueType.DateTime
Seriesl.BorderWidth = 2

Chartl.Series.Add(Seriesl)
Chartl.Legends.Clear()

This sub-routine configures the display of the graph. The chart is set to a line type with the X-axis setto a
DateTime value type. ‘Chartl.Series.Add(Series1)’ adds this newly formatted series to the graph,
called ‘Chart?1’

Timerl Tick — MainForm - Investu Development 1
The simulation will constantly be updating with up-to-date stock market information. Therefore, a timer is

Private Sub Timerl Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Timerl.Tick

Timerl.Interval = UpdateIntervalComboBox.SelectedItem * 1000
FetchStockDetails(SelectStockComboBox.SelectedItem)
NameBox.Text = splitStockInfo(StockInfo, "name").ToString
PriceBox.Text = splitStockInfo(StockInfo, "price").ToString

ChangeBox.Text = splitStockInfo(StockInfo, "change").ToString

GraphSettings()
PlotNewPoint(DateTime.Now, PriceBox.Text)

End Sub

needed so that information can be retrieved at a set interval.

Timerl.Interval = UpdateIntervalComboBox.SelectedItem * 1000

The first part of the Timer code makes sure that the timer interval is reset back to the time the user set it
to. This is done incase an update needs to be forced at any point, in which case the timer would need to
be set to an interval of 1 millisecond to cause the update to happen immediately. The timer is reset back
to normal each time tick by checking a combobox called ‘Updatelnterval’ in which the user can select a
time in seconds. This is then multiplied by 1000 and set as the timer interval.

FetchStockDetails(SelectStockComboBox.SelectedItem)

INVESTU — J—H----- 60

FetchStockDetails is a sub-routine that pulls the raw XML data from the internet and processes it. The
relevant information is then stored under StockInfo. This sub-routine is only passed a single parameter,
which is the stock symbol of the stock that is going to be queried.

NameBox.Text = splitStockInfo(StockInfo, "name").ToString
PriceBox.Text = splitStockInfo(StockInfo, "price").ToString
ChangeBox.Text = splitStockInfo(StockInfo, "change").ToString

The user interface for the simulation has 3 text boxes that display information about the stocks being
views. These boxes show the company name, the current share price, and the intraday price change of
the stock. The simulation therefore needs a method of extracting this information from the Stockinfo string
retrived via the FetchStockDetails sub-routine. This function is called SplitStockinfo, which can be passed
two parameters, Stockinfo and the attribute needed to be returned, and it will return that attribute. This is
then made into a string and displayed in the textboxes on the user interface. Stockinfo is global in this
instance of the simulation however in future versions it will not be and it is therefore passed to the
function as a argument to make it possible to remove it as a global variable in later versions.

GraphSettings()
GraphSettings is a sub-routine that adds further formatting to the graph displayed in the user interface.

GraphSettings needs to be constantly called as it formats the graph depending on the current price of the
stock, which is constantly changing.

PlotNewPoint(DateTime.Now, PriceBox.Text)

PlotNewPoint is a sub-routine that adds a point to the graph when a stock has been selected. It takes
DateTime as the X co-ordinate, and the price of the stock as the Y co-ordinate.

Sub GraphSettings()

Seriesl.BorderWidth = 2

Chartl.ChartAreas(0).AxisY.Minimum = PriceBox.Text -
Val(GraphScaleComboBox.Text)

Chartl.ChartAreas(0@).AxisY.Maximum = PriceBox.Text +
Val(GraphScaleComboBox. Text)

End Sub

GraphSettings visually updates the graph by changing the scale of the axis. By changing the value of a
combo box called GraphScale, the user can effectively zoom in or out of the graph.

INVESTU — J—H----- 61

Development of the sub-routine FetchStockInfo - MainForm - Investu
Development 1

The section focuses on the development of the feature that fetches the relevant stock information for a
symbol passed to it. This is vital for the simulation to function, as it will allow for the user to have accurate
stock prices and information, and allow for the creation and manipulation of data displays.

The creating of this sub-routine relies on a spreadsheet discussed in Design, under Data Sources and
Destinations. This spreadsheet contains all of the stock information for every company in the FTSE 100,
and utilizes the GOOGLEFINANCE function to keep stock information up to date.

When we search the Google Sheets URL in a search engine, with a stock symbol appended, this is what
is displayed:

e
[4 httpsi//spreadsheets.goc X
!

™

& C | & Secure | https://spreadsheets.google.com/feeds/list/0AhySzEddwIC1dEtpWFIhQURCWURZNEVIUmpUeVgwdGe/1/p... ¥¥ :

<?xml version="1.8" encoding="UTF-8'?»<feed xmlns="http:/ www.w3.org/2005/Atom’
xmlns:openSearch="http://a%.com/-/spec/opensearchrss/1.8/" xmlns:gsx="http://schemas.google.com/spreadshests/2006/ extended " »
<didrhttps://spreadsheets.google. com/feeds/list/19]YetE4-k5b0aYBsdaw-1_TLO@eVEFWB7ZRIaghXoAg/1/public/basic</id><updated>2814-89-
15T15:11:34,1967«/updated><category scheme="http://schemas.google.com/spreadsheets/2006"
term="http://schemas.google.com/spreadsheets/2@@6#1list" /><title type="text'>FTSEl@@</titler<link rel='alternate’
type="application/atom+xml’ href="https://docs.google.com/spreadsheets/d/19]YetE4-kSb0aYBsdaw-1_TLO@eVEFWB7ZIRIaghXoAg/pubhtml’ />
<link rel="http://schemas.google.com/g/28@5#feed" type='application/atom+xml’
href="https://spreadsheets.google.com/feeds/list/19]jYetE4-k5b0aYBsdaw-1_TLOBeVEFWB7ZRIaghXoAg/1/public/basic ' /><link
rel="http://schemas.google.com/g/2805#post’ type="spplication/atom+xml’ href="https://spreadsheets.google.com/feeds/list/19j¥etE4-
k5b0aYBsdaw-1_TLO®eVEFWB7ZRIaghXoAg/1/public/basic’/><link rel="self" type='application/atom+xml®
href="https://spreadsheets.google.com/feeds/list/19]YetE4-k5b0aYBsdaw-1_TLOBeVEFWB7ZRIaghXoAg/1/public/basic?sq=symbol%3DBARC.L />
<author><namerrourkie</name><email>rourkie@gmail.com</email></author><opensearch:totalResults>1</opensearch: totalResults>
<openSearch:startIndex>1</opensearch:startIndex><entryr><idrhttps://spreadsheets.google.com/feeds/list/19jYetE4-k5b0avBsdaw-
1_TLO@eVEFWB7ZIRIaghXoAg/1/public/basic/cu7ef</id»<updated>2814-89-15T15:11:34.196Z</updated><category
scheme="http://schemas.google.com/spreadsheets/2806" term="http://schemas.google.com/spreadsheets/2@@6#list’ /><title
type="text'»BARC.L</title><content type="text'>name: BARCLAYS, price: 208, change: -1.7</content><link rel='self’
type="application/atom+xml’ href='https://spreadsheets.google.com/feeds/list/19]YetE4-k5b0aYBsdaw-
1_TLO@eVEFWB7ZIRIaghXoAg/1/public/basic/cu?6f ' /></entry></feed>

When this XML is looked at more closely, a structure emerges:

<?xml version='1.0' encoding='UTF-8'?>

<feed xmlns='http://www.w3.0rg/2005/Atom' xmlns:openSearch="http://a%9.com/-
/spec/opensearchrss/1.0/"'
xmlns:gsx="http://schemas.google.com/spreadsheets/2006/extended'>

<id>https://spreadsheets.google.com/feeds/list/19jYetE4-k5bOaYBsdaw-
1 TLOOeVEFWB7ZRIaghXoAg/l/public/basic</id>
<updated>2014-09-15T15:11:34.196%4</updated>

<entry>

INVESTU — J—H----- 62

https://spreadsheets.google.com/feeds/list/19jYetE4-k5bOaYBsdaw-l_TLO0eVEFWB7ZRIaqhXoAg/1/public/basic%3c/id%3e%20%3cupdated%3e2014-09-15T15:11:34.196Z%3c/updated
https://spreadsheets.google.com/feeds/list/19jYetE4-k5bOaYBsdaw-l_TLO0eVEFWB7ZRIaqhXoAg/1/public/basic%3c/id%3e%20%3cupdated%3e2014-09-15T15:11:34.196Z%3c/updated
https://spreadsheets.google.com/feeds/list/19jYetE4-k5bOaYBsdaw-l_TLO0eVEFWB7ZRIaqhXoAg/1/public/basic%3c/id%3e%20%3cupdated%3e2014-09-15T15:11:34.196Z%3c/updated

<id>https://spreadsheets.google.com/feeds/list/19jYetE4-k5b0OaYBsdaw—
1 TLOOeVEFWB7ZRIaghXoAg/1l/public/basic/cu76f</id>

<updated>2014-09-15T15:11:34.196%</updated>

<category scheme='http://schemas.google.com/spreadsheets/2006"'
term="http://schemas.google.com/spreadsheets/2006#1ist"'/>

<title type='text'>BARC.L</title>

<content type='text'>name: BARCLAYS, price: 208, change: -1.7</content>
<link rel='self' type='application/atom+xml'
href='https://spreadsheets.google.com/feeds/list/19]YetE4-k5bOaYBsdaw—
1 TLOOeVEFWB7ZRIaghXoAg/l/public/basic/cu76f'/>

</entry>

</feed>

This XML has one node called ‘entry’. Inside ‘entry’, there are 5 elements. The 4" element contains the
information we need:

<content type='text'>name: BARCLAYS, price: 208, change: -1.7</content>

Therefore to extract this string, we need to get the element from the 41" child of the node ‘entry’. This can
be done through this code:

StockInfo = node.ChildNodes.Item(4).InnerText

We have now successfully extracted the information from the XML and assigned it to the variable
StocklInfo. Stockinfo now has this value:

name: BARCLAYS, price: 208, change: -1.7

INVESTU — J—H----- 63

https://spreadsheets.google.com/feeds/list/19jYetE4-k5bOaYBsdaw-l_TLO0eVEFWB7ZRIaqhXoAg/1/public/basic/cu76f%3c/id%3e%20%3cupdated%3e2014-09-15T15:11:34.196Z%3c/updated
https://spreadsheets.google.com/feeds/list/19jYetE4-k5bOaYBsdaw-l_TLO0eVEFWB7ZRIaqhXoAg/1/public/basic/cu76f%3c/id%3e%20%3cupdated%3e2014-09-15T15:11:34.196Z%3c/updated
https://spreadsheets.google.com/feeds/list/19jYetE4-k5bOaYBsdaw-l_TLO0eVEFWB7ZRIaqhXoAg/1/public/basic/cu76f%3c/id%3e%20%3cupdated%3e2014-09-15T15:11:34.196Z%3c/updated
https://spreadsheets.google.com/feeds/list/19jYetE4-k5bOaYBsdaw-l_TLO0eVEFWB7ZRIaqhXoAg/1/public/basic/cu76f%3c/id%3e%20%3cupdated%3e2014-09-15T15:11:34.196Z%3c/updated

FetchStockInfo — MainForm - Investu Development 1

Sub FetchStockDetails(ByVal StockSymbol As String)
Try
Dim Document As XmlDocument
Dim Nodelist As XmlNodelist
Dim Node As XmlNode

Document = New XmlDocument()

Document.Load("https://spreadsheets.google.com/feeds/1list/@AhySzEddwIC1dEtpWFOhQU
hCWURZNEViUmpUeVgwdGec/1/public/basic?sg=symbol=" & StockSymbol)

Nodelist = Document.GetElementsByTagName("entry")

For Each Node In Nodelist
StockInfo = Node.ChildNodes.Item(4).InnerText
Next

Catch ErrorVariable As Exception
Timerl.Stop()
MsgBox(ErrorVariable.ToString())

End Try

FetchStockDetails fetches XML data from an online feed, and then searches through the nodes to find
relevant information.

Try

Catch ErrorVariable As Exception
Timerl.Stop()
MsgBox (ErrorVariable.ToString())
End Try

The code in this sub-routine is enclosed in a try/catch loop to avoid crashes. The code could potentially
throw an exception if the sub-routine tries to fetch information from an invalid link, or if a node is searched
that doesn’t exist. If an exception is caught, the timer stops. This is to avoid a stack overflow error. A
message box is then displayed detailing the error variable for debugging purposes.

Dim document As XmlDocument
Dim nodelist As XmlNodelist
Dim node As XmlNode

document = New XmlDocument()

Before fetching the XML data, a variable called ‘document’ is created. Its data type is XMLDocument¥,
and a new instance of it is created. A variable called ‘nodelist’ is also created, which will be used to hold a
list of all the nodes from the file, and ‘node’ which will be used to hold each individual node.

document.Load("https://spreadsheets.google.com/feeds/1list/0AhySzEddwIC1dEtpWFOhQUhCWU
RZNEViUmpUeVgwdGc/1/public/basic?sq=symbol=" & StockSymbol)

INVESTU — J—H----- 64

The simulation loads in the XML data from a link to a spreadsheet. This spreadsheet holds all of the
information for every stock in the FTSE 100. This spreadsheet is broken down into more detail in the
analysis section. At the end of the link, the stock symbol being queried is appended to the end. This
means the XML data loaded is only information relevant to the stock selected.

nodelist = document.GetElementsByTagName("entry")

A list of nodes is constructed, which scans the XML and retrieves all nodes where the tag name is ‘entry’.

For Each node In nodelist
StockInfo = node.ChildNodes.Item(4).InnerText
Next

This For-Loop contains the code for extracting the stock information, discussed in the previous section,
FetchStockinfo — Development.

The XML file for each stock is structured in the same way. Because of this, we always know where to find
the information we want, as it will always be in the same place. We know that if a node list is created that
indexes every element where the tag name is ‘entry’, then there will be a single node in the list, and the
4t child node of that node will contain the relevant stock information needed for the simulation. Because
we know that this is the same for each XML document, we can hard-code the pathway to this information.
There only exists one node in the node list, and so it may seem redundant to use a For-loop to be used,
however this allows for expansion later, if more information needs to be extracted from different nodes
within the XML.

INVESTU — J—H----- 65

SplitStockinfo — MainForm - Investu Development 1

When FetchStockInfo is called, a string is returned, in the following format:

name: BARCLAYS, price: 208, change: -1.7

In the XML this is represented as text and as such it is not able to be broken down any further simply by
selecting child nodes; information must be extracted by splitting the string. The purpose of SplitStockinfo
is to allow the user to pass a string, Stockinfo, and the information they wish to have extracted, e.g. Price,
Change or Name, and then for the function to return the correct information.

Function splitStockInfo(ByVal StockInfo As String, ByVal Identifierl As String)

Dim ArrayList() As String = stockInfo.Split(":")

Dim SubArrayList() As String = ArrayList(1).Split(",")
Dim SubArraylListl() As String = ArraylList(2).Split(",")
Dim StockChange As Decimal = ©

Dim StockPrice As Decimal = ©
Dim StockName As String = ©

Select Case Identifieril

Case "name"
StockName = SubArrayList(0)
Return StockName

Case "price"
StockPrice = SubArraylList1(9)
Return StockPrice

Case "change"
StockChange = ArrayList(3)
Return StockChange

Case Else
Return "ERROR RETREIVING INFORMATION"

End Select

Function SplitStockInfo(ByVal StockInfo As String, ByVal Identifierl As String)

The two arguments passed to SplitStockinfo are Stockinfo - a string containing the information, and
‘Identifier1’ which tells the function which part of the string the program needs to extract. The 3 supported
values for Identifierl are price, name and change.

Dim ArrayList() As String StockInfo.Split(":")

Dim SubArraylList() As String = ArrayList(1).Split(",")
Dim SubArrayListl() As String = ArrayList(2).Split(",")
Dim ExtractedValue As String

INVESTU — J—H----- 66

name: BARCLAYS, price: 208, change: -1.7

The above string is an example of StockInfo. The first line of code (Dim ArrayList() As String
StockInfo.Split(":")) uses VB’s built in .split function to split this string where there is a colon, and
puts the resultant items into an array. In this case, the array would look as follows:

Array index Value

0 Name

1 BARCLAYS, price
2 208, change

3 -1.7

The next line (Dim SubArrayList() As String = ArrayList(1).Split(",")) performs another split,
and puts the items into a new array called SubArrayList(). This time, the split happens where there is a
comma, and the string being split is not the whole string, but a part of the string that is found in
ArrayList(1). In this case, that would be

: BARCLAYS, price

Splitting this string where there is an apostrophe would create an array with values as follows:

Array index Value
0 BARCLAYS
1 price

We have now successfully extracted the name of the stock from the XML file and put it into the array
SubArrayList() at index value O.

Now we need to do the same for price and change, the other two parameters being extracted.

The third line of code (Dim SubArraylList1() As String = ArraylList(2).Split(",")) does the
same as the second line, but instead of splitting the string in ArrayList(1), it splits the string in ArrayList(2).
The value in ArrayList(2) in this case is as follows:

208, change

Splitting this value where there is an apostrophe would result in an array with the following values.

INVESTU — J—H----- 67

Array index Value

0 208

1 change

We have therefore extracted all 3 pieces of required information:
Name — stored in SubArrayList(0)

Price — stored in SubArrayList1(0)
Change — stored in ArrayList(3)

Select Case Identifierl

Case "name"
ExtractedValue = SubArraylList(0)

Case "price"

ExtractedValue = SubArraylList1(0)
Case "change"

ExtractedValue = ArraylList(3)
Case Else

Return "Invalid Identifier"
End Select
Return ExtractedValue
Here a Select Case is used to identify which information needs to be returned, and then the value of
ExtractedValue is set to the corresponding value — for example if the value of ‘Identifier1’ is “change”,
then the value of ‘ExtractedValue’ is set to ArrayList(3), which is where the value of change is stored, as

discussed previously.
The value of ExtractedValue is then returned.

INVESTU — J—H-----

68

PlotNewPoint — MainForm - Investu Development 1

Sub PlotNewPoint(ByVal XValue As String, ByVal YValue As Decimal)
s.Points.AddXY(XvValue, YValue)
End Sub

PlotNewPoint is a sub-routine that adds a new points to the series, which in turn changes the appearence
of the graph. This is done simply through the Points.Add feature of VB, which takes an X and a Y co-
ordinate as arguments, and then creates a new point.

ClosePositionsButton — MainForm - Investu Development 1

Private Sub ClosePositionsButton_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles ClosePositionsButton.Click

Dim PositionIndex As String =
OpenPositionsListBox.SelectedIndex

If OpenPositionsListBox.CheckedItems.Count > @ Then
FetchStockDetails(OpenPositions(PositionIndex).stockSymbol)

UpdateBalance(Balance, splitStockInfo(StockInfo, "price"),
OpenPositions(PositionIndex).stockQuantity)

OpenPositions.RemoveAt(PositionIndex)
UpdatePortfolio()
Else

MsgBox("Please select the position you'd like to close.")
End If

Catch ErrorVariable As Exception
MsgBox(ex.ToString())
End Try
End Sub

As the user is able to buy stock in this development of the simulation, it only makes sense that they have
the ability to sell stock and have their portfolio updated. This sub-routine performs the sale of stock, and
updates the users balance, as well as removing the stock from the users’ portfolio.

INVESTU — J—H----- 69

Try

Catch ErrorVariable As Exception
MsgBox(ex.ToString())
End Try

This sub-routine has a try-catch in it to catch exceptions and display the error message when a run-time
error occurs. These could occur if the user manages to try and sell a stock they don’t have, or if there is
an out-of-bounds exception.

Dim PositionIndex As String = OpenPositionsListBox.SelectedIndex

In the simulation, all of the users open positions are displayed in a box. The user can select an open
position from this box to sell. This sub-routine works on the basis that the index value of item in the box is
the same as the index value of the open position in the OpenPositions() list. This line of code fetches this
index value and assigns it a name, ‘PositionIndex’ which is useful for reducing the visual complexity of
this sub-routine.

If OpenPositionsListBox.CheckedItems.Count > @ Then

Else
MsgBox("Please select the position you'd like to close.™)
End If

The code inside this conditional will only execute when two conditions are met. These conditions ensure
a) that there exists an item in the list box, and b) of the items in the box, one of them is ticked. This can
be condensed into one condition: OpenPositionsListBox.CheckedItems.Count > @, because in
order to have a ticked item in the list box it implies that an item exists to tick. If this condition is met then
the following code executes.

FetchStockDetails(OpenPositions(PositionIndex).stockSymbol)

FetchStockDetails() is a sub-routine discussed earlier in Development 1. In this sub-routine, it is called to
find out the value of the stock being sold. This is crucial as the whole concept of the simulation relies on
the fact users can buy and sell stocks for different prices. The argument passed to FetchStockDetails() is
the StockSymbol, which in this case is stored in the list OpenPositions(). ‘PositionIndex’ here refers to the
index value of the stock being sold. Which this information we can find the stock symbol of the open
position being closed, by retrieving the .StockSymbol attribute from OpenPositions, at list index
Positionindex. This then sets the value of StocklInfo, a global variable discussed earlier, to the string
containing the information about that stock. This can then be split to get the price.

INVESTU — J—H----- 70

UpdateBalance(Balance, splitStockInfo(StockInfo, "price"),
OpenPositions(PositionIndex).stockQuantity)

UpdateBalance is a sub routine that takes 3 arguments: the users balance, and the price and quantity of
the stocks being sold, and then updates the balance buy performing a price * quantity multiplication and
adding the result onto the balance.

OpenPositions.RemoveAt(PositionIndex)

OpenPositions() is the list holding all of the users currently open positions. This list is then displayed in a
list box. To remove an item from the user’s portfolio, and then from the list box, the item needs to be
removed from OpenPositions() list. Because the list box displaying the open positions and the list holding
the open positions both have the same index value, it is possible to use Positionindex as the index value
to remove at in OpenPositions, which will in turn allow the position to be removed from the list box
displaying the open positions.

To do this, *.RemoveAt’ is used, which removes an item from a list using an index value. The index value
in this case is Positionindex, defined earlier in the sub-routine.

UpdatePortfolio()

Calling update portfolio will update the visual display in the program that displays the open positions the
user has.

INVESTU — J—H----- 71

UpdatePortfolio — MainForm - Investu Development 1

Sub UpdatePortfolio()
OpenPositionsListBox.Items.Clear()

For 1 = @ To OpenPositions.Count - 1
OpenPositionsListBox.Items.Add(OpenPositions(1l).stockSymbol & " - " &
OpenPositions(1l).stockQuantity & " - " & OpenPositions(l).stockvValue & " - " &
OpenPositions(1l).UniqueID & vbNewlLine)
Next

End Sub

OpenPositionsListBox.Items.Clear()

In order to keep the index values of the list box and the OpenPositions() list the same, the list box
containaing the open positions has to first be wiped, and then the content re-written, so that the index
values continues to match up.

For 1 = @ To OpenPositions.Count - 1
OpenPositionsListBox.Items.Add(OpenPositions(1l).stockSymbol & " - " &

OpenPositions(1l).stockQuantity & " - " & OpenPositions(l).stockValue & " - " &

OpenPositions(l).UniqueID & vbNewLine)

Next

This for-loop simply lopops through all of the open positions and adds the details to the list box, so that
the use has a graphical representation fo the positions they have open in the simualation.

INVESTU — J—H-----

72

UpdateBalance — MainForm - Investu Development 1

Sub UpdateBalance(ByVal Balance As Integer, ByVal Price As Integer, ByVal
Quantity As Integer)

Balance = Balance + (Quantity * Price)
BalanceBox.Text = "£" & Balance / 100

End Sub

This sub-routine is called in ClosePositions and is responsible for calculating the users new balance. The

sub-routine simply performs a multiplication followed by an addition to calculate the new balance, and
then updates the visual display to reflect the new balance.

INVESTU — J—H-----

73

BuyForm - Investu Development 1

When the user wishes to open a position on a stock, they enter the buy form. BuyForm is a display that
allows the users to see the stock name and share price, and then select a quantity to buy.

Global Variables — BuyForm - Investu Development 1

Public Class BuyForm

Dim Quantity As Integer

Dim Price As Decimal = MainForm.PriceBox.Text

Dim StockSymbol As String = MainForm.SelectStockComboBox.SelectedItem
Dim StockName As String = MainForm.NameBox.Text

The variables declared here are Quantity, Price, StockSymbol and StockName. These values will be used
throught BuyForm and so are declared globally here, however in future versions will most likely be
defined locally and passed to where they are needed instead.

The values for the these variables are fetched from MainForm, excluding Quantity which is determined by

the user in BuyForm. MainForm will be open in the background and so accessible to retrieve information
from.

INVESTU — J—H----- 74

BuyForm_Load — BuyForm - Investu Development 1

Private Sub BuyForm_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Quantity =1

QuantityBox.Text = Quantity

PriceBox.Text = "£" & Math.Round((Price * Quantity) / 1ee, 2)
StockDisplayBox.Clear()

StockPriceBox.Clear()

StockDisplayBox.Text = Stockname

StockPriceBox.Text = Price
End Sub

The code here is self explanatory — it mostly deals with the visual appearence of BuyForm.

Quantity is set to 1, as it may cause unexpected results if the user tries to open a position on a stock with
a share quantity of 0. The value in the total price box is converted to pounds and displayed rounded to 2
decimal places.

Values are cleared incase there exists values remaining from the last time the form was opened. The
values of the StockDisplayBox and StockPriceBox are set to StockName and Price respectively, in order
to show the user the stock name and price of the stock they are currently opening a position on.

INVESTU — J—H----- 75

TrackBar_Scroll — BuyForm - Investu Development 1

Private Sub TrackBarl_Scroll(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles QuantitySlider.Scroll

QuantitySlider.Maximum = Int(MainForm.Balance / Price)
Quantity = QuantitySlider.Value

QuantityBox.Text = Quantity

PriceBox.Text = "£" & Math.Round((Price * Quantity) / 100, 2)

End Sub

This sub-routine has ‘Handles QuantitySlider.Scroll’ appended in its declaration which means it is called
when QuantitySlider is scrolled left or right. QuantitySlider is a track bar in BuyForm that will be used to
determine the number of shares the user wishes to buy.

QuantitySlider.Maximum = Int(MainForm.Balance / Price)

The maximum value the track bar will scroll to is set to the maximum number of shares the user can buy
with their current balance, which is worked out by truncating the value that is a result of dividing their
balance by the current price.

Quantity = QuantitySlider.Value
QuantityBox.Text = Quantity
PriceBox.Text = "£" & Math.Round((Price * Quantity) / 1@e, 2)

When the track bar is scrolled, these lines of code update the value of Quantity to the current value of the
track bar, and then set the QuantityBox value to quantity, so the user can see the number of shares they
have currently selected. The total price of the purchase is then updated, using the Price * Quantity
calculation

INVESTU — J—H----- 76

BuyButton_Click — BuyForm - Investu Development 1

The BuyButton in BuyForm is the button the user uses to enter a new position, after they have selected a
guantity using the track bar. This button executes code to add the new position to a list of all currently
open positions, which is then added to the portfolio box in the simulation, where the user can view all of

their currently open positions.

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl.Click

If MainForm.Balance > (Quantity * Price) Then

MainForm.OpenPositions.Add(New StockAttributes With {.stockName =
Stockname, .stockSymbol = StockSymbol, .stockValue = Price, .stockQuantity
= Quantity})

MainForm.Balance = MainForm.Balance - (QuantityBox.Text *

StockPriceBox.Text)
MainForm.BalanceBox.Text = "£" & MainForm.Balance / 100

MainForm.UpdatePortfolio()

Me.Close()
Else
MsgBox("You don't have enough money to buy that many " & Stockname &
" shares.")
End If
End Sub
End Class

If MainForm.Balance > (Quantity * Price) Then

Else
MsgBox("You don't have enough money to buy that many " & Stockname & "
shares.™)

End If

This conditional is used as another layer of error checking, in case the other counter measures were
ineffective. The condition simply checks that the users balance is greater than the cost of the position

they are trying to open.

INVESTU — J—H----- 77

MainForm.OpenPositions.Add(New StockAttributes With {.stockName =
Stockname, .stockSymbol = StockSymbol, .stockValue = Price, .stockQuantity =
Quantity})

Once the validation has been passed, a hew position is opened. This is done using .Add on the
‘OpenPositions’ list in MainForm. The 4 attributes of the list corrospond to the 4 variables declared earlier
in BuyForm — StockName, StockSymbol, StockValue and StockQuantity.

MainForm.Balance = MainForm.Balance - (QuantityBox.Text * PriceBox.Text)
MainForm.BalanceBox.Text = "£" & MainForm.Balance / 100
MainForm.UpdatePortfolio()

This code simply updates the balance and then sets it in MainForm, and then calls UpdatePortfolio to
erase the current contents of the portfolio display box and populate it with the users new portfolio.

INVESTU — J—H----- 78

Testing 1 - Investu Simulation — Development 1

Every sub-routine has been tested individually to ensure it works independently, however these tests
have not been shown. The tests displayed are tests that show multiple sub-routines and functions
working together to produce the desired outcome.

Test Objective Evidence

Obje
ctive

met?

Show simulation When the user loads the simulation, the user is presented with the following
loads all of the
stock symbols in o Investu V1 -
the Symbols() o = o=

array to the - Pice G

program, and they

are selectable

Close Postion

Curent Balance: [£100000

user interface.

In the top left corner of the simulation is a drop down box labelled ‘Select

Stock’. When the user selects the drop down menu, a list of stock symbols is
presented. These symbols are those found in the Symbols() array discussed
earlier in Development 1. Every stock symbol hard-coded into the Symbols()

array, are present here in the drop-
ol Investu V1 down menu.
Select Stock: MName
| l~| |
RRL Price S
AVL This indicates that the
E’EECLL I: requirements set out in the test
TSCO.L description have been met and the
GLEN.L
HSRAL test has therefore been passed.
ITV.L
BAL
ADN.L

INVESTU — J—H-----

79

Show when stock
symbols are
selected, the
simulation fetches
the information
related to that
stock from the
internet

a5 Investu V1

Select Stock: Mame
e BARCLAYS
Price Change
e 216.6 4.4

I I
Upon selecting a stock symbol, in this case ‘BARC.L’, the information for the

stock is loaded correctly. This can be tested by corroborating the information
with another source, such as Googles’ built in share pricing feature.

(note the price of Barclays’ shares changed between taking the above
screenshot and the screenshot below)

. “T3 torm1 LON: BARC
| Dim Arraylist() As String 5 Overview News Compare Financiz

o Investu V1

Select Stock: MName

[earcy] [214.75 6Bx-120(0.56%) +

5% Price Ch| 21 Mar, 09:53 GMT - Disclaimer
21475 =i
1 day 5 days 1 month

In the above screenshot we can see that the price displayed in both Google
and the Investu simulation is 214.75.

This indicates that the requirements set out in the test description have been
met and the test has therefore been passed.

INVESTU — J—H-----

80

Show simulation
structures a graph
and styles it on
selection of stock

Graph

2196

2184

217.2

216

214.8

20/03/2018 22:45:20

When a symbol is selected this graph is created. This graph was created
when loading in BARC.L, when the price was 216.6. The graph scale goes
up to 219.6 and goes down to 213.6, which is correct as the value selected in
GraphScaleComboBox (bottom of the graph) is 3.

There exists only one point, which is at 216.6 at the time 22:45:20. This
graph only has one point because it has only just been loaded, and so not
enough time has elapsed for any points to have been plotted, except the
point plotted immediately after the graph is created.

This indicates that the requirements set out in the test description have been
met and the test has therefore been passed.

INVESTU — J—H-----

81

Show there is an
interval between
plotting of graph
points determined
by the value
selected by the
user in
UpdatelntervalCo
mboBox

Graph
2196
218.4
2172
™ T (]
216 k\") \H
2148 \
‘{_j7 ,)
2136 %

2000372018 22:46:18 2000272018 22:46:24 200372018 22:46:28

This screenshot was taken just over 10 seconds after a stock symbol was
selected. As indicated by the 3 red circles drawn on, there are 3 points
plotted in the graph. The first was plotted immediately as the graph was
loaded. From the scale on the X axis, we can see that the next point was
plotted about 5 seconds later, at the third point was plotted exactly 10
seconds after the graph was loaded into the simulation.

This data is in line with what is expected, as the update interval at the bottom
of the graph (combo box on the left) is set to 5.

This indicates that the requirements set out in the test description have been
met and the test has therefore been passed.

INVESTU — J—H-----

82

Show simulation
populates graph
with points, with
the X axis
measured in time
and the Y axis
measured in stock
price. The price
and time of the
points is accurate.

Graph

217.57

21717

216.77 e

216.37

215.97

20003/2018 14:43:48 20/03/2018 14:51:53
~ [03/2018 14:39:33 20003/2018 14:47:47 20/03/2018 14:56:03

Above is the result of selecting the Barclays stock and leaving the program to
run for 20 minutes. Each point represents 5 seconds passed. This graph
therefore contains 400 points ((20*60)/5 = 240)

This indicates that the requirements set out in the test description have been
met and the test has therefore been passed.

Show that the
user can
manipulate the
graph scale in
order to zoom
in/out of the graph

INVESTU — J—H-----

83

Graph Graph

297 —m8m8m 2216
268 +—m— 215,61
287 +— 21764
215.5——— 2156
2B3+—m 213.6
261 4—— 211.6-

5 -] @] I

Above are two screenshots of the Y-axis of the graph. The screenshot on the
left shows the graph when the GraphScaleComboBox value is set to 0.5. As
the price of the stock is currently 216.6 when this screenshot was taken, this
means the graph extends to 216.6 + 0.5 and 216.6 - 0.5. This has the effect
of zooming in to the graph, so that changes in price look visually larger and
are easier to see.

In the right-hand screenshot, the value of GraphScaleComboBox is set to 5,
which means the graph is effectively zoomed out. This scale is able to be
changed during run-time allowing the user to adjust how they view the graph.

This indicates that the requirements set out in the test description have been
met and the test has therefore been passed.

INVESTU — J—H-----

84

Show that

BuyForm loads B8 Investu V1
and displays
information
|BARC.L v | | BARCLAYS
related to the
stock currently _— Price Change
selected in the |21E.E 0.4
simulation
| 85 BuyForm — O x
| BARCLAYS [2165 |
Guartity: Price
|1 | [e217 |

INVESTU — J—H-----

When clicking on the ‘BUY’ button in the program, another form appears this
form is BuyForm. The form contains the correct name for the stock currently
being looked at, which is BARCLAYS in this case. The current price of one
Barclays share is also displayed, which in this case is set to 216.6. The initial
quantity is set to 1, which is the minimum the bar will slide to. The second
price box shows the price displayed in pounds, rounded to the nearest
penny.

This indicates that the requirements set out in the test description have been
met and the test has therefore been passed.

Show that the
BuyForm allows
users to select the
number of shares
to buy, and that
the price updates
dynamically

& BuyForm _ O W Th|sf s.cfreer.\shot shows
the initial display of the
form upon load. The

| BARCLAYS [2166 | quantity is set to 1 and the
price has correctly been

' converted from pence to
pounds.

Cuartity: Price

|1 | |e217

Open New Position

INVESTU — J—H-----

86

Sliding the scroll bar about
1/3 of the way causes the
guantity to update. In this
case the quantity is set to
165,917. The price of one
share is currently to 216.6.
The total price should
therefore be displayed as
(165917 * 216.6)/100 =
359376.222 =
£359,376.22 — which it is.

When the scroll bar is set to
its maximum value, the
quantity is 461665, which is
the maximum value that
can be bought with a
balance of £1,000,000 —
the value of balance
defined in the development
of the simulation.

8 BuyForm — O >
| BARCLAYS |2166 |
Cluartity: Price
165917 | |£359376.22

Open New Position

a5l BuyForm — O >

| BARCLAYS |2166

Cluantity: Price

461665 | |£999966.39

Cpen New Position

This indicates that the requirements set out in the test description have been
met and the test has therefore been passed.

INVESTU — J—H-----

87

Show the user’s
buy registers and
is displayed in the
portfolio box, and
the balance is
updated correctly

=) BuyForm — O X
NOTE: In this test, the
value of balance was set
BARCLAYS 2128 | to 10000000, which is the
' same as £100,000,
instead of £1,000,000 as
Quantity: Price in the previous test.
46750 | |e9g988.25 |

Open New Position

In this screenshot, a buy
offer is being created.
The scroll bar is set to its
maximum, and the total price is therefore just under £100,000.

ot Inwestu V1

Select Stock: Mame
BARC.L ~| | BARCLAYS |
B Price Change
2139 2,05 |

[] BARCLAYS - 46750 - 2139

Close Position

Cument Balance: |£1.75

When the button labelled ‘Open New Position’ is then selected, the selected
quantity of stock is bought. ‘Current Balance’ at the bottom is now £1.75.
This is because a single share of Barclays stock costs £2.14, and so £1.75 is
the remainder left over that is less than the minimum amount required to buy
one Barclays share.

INVESTU — J—H----

88

The new open position is then added to the portfolio section of the
simulation. The new entry displays ‘BARCLAYS — 46750 — 213.9’ Which
reflects the stock name, quantity bought, and buy price respectively. This
format is perhaps not the most user-friendly, however this will be addressed
in the following developments, as this development simply serves as proof of
concept for the simulation.

1 85 Investu W1

Select Stock: Mame
RR.L v| | ROLLS-ROYCE HLDGS |
- Price Change
|897.2 £.2 |

[] TESCO PLC - 25043 - 205.9

[] BARCLAYS-11682-2138

[] BAESYSTEMS - 2155- 5846

[] ROLLS-ROYCE HLDGS - 308 - 897.2

Close Postion

Curment Balance: |£3375.00

The above screenshot shows another portfolio. Instead of simply buying the
maximum amount of Barclays stock possible with the balance, this portfolio
represents a diversified portfolio, with some money remaining in the users
balance.

During this test, when selecting the ADN.L symbol in an attempt to add
shares to the portfolio, the program crashed and threw the following error:

INVESTU — J—H-----

89

Case "change”

Return StockChange l\
L. InvalidCastException was unhandled X

Case Else

Return "ERROR RETREIVING TN Conversion from string " #N/A" to type 'Decimal’ is not valid

Troubleshooting tips:

Select

‘When casting from a number_the value must be a number less than infinity, | A

The simulation was attempting to retrieve some information about the stock,
however this resulted in a crash as the split of the information resulted in
‘#N/A’ instead of a number as would be expected. As ‘#N/A'’ is a string and
not a decimal, this crashed the program.

This crash was caused because there existed no stock information for the
ADNL.L stock. This indicates that the company that corresponds to the ADN.L
symbol is no longer indexed in the FTSE 100, and therefore it is not possible
to retrieve information regarding that specific stock.

Show the user is
able to close open
positions and that
the simulation
registers the sell
action, updating
the users balance
and portfolio

T T

85 Investu W1

Select Stock: MName
BARC.L ~| | BARCLAYS |
Price Change
BuY [214.05 19 |

BARCLAYS - 46718 - 214.05

Cloge Position

Curment Balance: |£0.12

Selecting Barclays stock and buying the maxiumum amount results in the
screensshot above. The user has one open position in their portfolio. The
open position has been selected, as indicated by the tick in the box next to
the position.

INVESTU — J—H-----

90

o5 Investu V1

Select Stock: Name
BARC.L ~| | BARCLAYS |
Frice Change
BuY [214.05 19 |

| Cloge Position |

Cumert Balance: |£55576.64

Here, the ‘Close Position’ button has been clicked, and the position has been
closed. The balance has returned close to £100,000, however not exactly. As
the value was the same when the position was opened and closed (214.05 in
both case), this value should be exactly £100,000.

Graph

217.05

215.85

214.65

21345

212.25

21/03/2018 09:37:20 21/03/2018 09:37:4% 21/03/2018 09:38:10

The above graph shows the price during this transaction. As is visible, the
price of the stock did not change over the running of the program. This
means that the balance should have returned to £100,000. However this was
not that case.

INVESTU — J—H-----

91

This indicates that there exists a rounding error in the simualtion during the
sell phase. This bug can be fixed by adding more accuracy to the stored
decimals, and through avoiding truncation of stored number.

This test has shown that although the feature works in the most part, there
exists a bug that needs to be fixed in order for the simulation to have a
smooth user experience.

INVESTU — J—H-----

92

Testing 1 Findings — Investu Simulation - Development 1

From the test results above, we can see that the first development of the Investu simulation is working
largely as expected, which indicates that the simulation has a good foundation to be built upon.

There does appear to be, however, two unexpected results in the last two tests;

1) The first unexpected result appears in test 9. When one of the stock symbols is selected from the
drop-down list, the program crashes. After looking into this error, it appears to be because this
company has fallen out of the FTSE 100 and is therefore their stock symbol is no longer
supported by the GOOGLEFINANCE function in google sheets. This causes the string #N/A’ to
be passed to the SplitStock function as he value for ‘Change’ which is expected to be a decimal
value. Passing a string to a function where a decimal is expected creates an error.

2) The second unexpected result occurs when the user closes a position. Even when the user buys
and sells at the same price, the end balance is not the same as the start balance, which indicates
there is some sort of rounding error in the simulation. This could be because of a data type being
stored as an integer instead of a decimal.

INVESTU — J—H----- 93

Fixing Errors - Investu Development 1

Error 1

In order to fix this error, a validation check needs to be added to make sure the value for ‘change’ is not
‘#N/A'. This was the code originally;

Function splitStockInfo(ByVal stockInfo As String, ByVal identifierl As String)

Dim ArrayList() As String = stockInfo.Split(":")

Dim SubArrayList() As String = ArraylList(1).Split(",")
Dim SubArraylListl() As String = ArrayList(2).Split(",")
Dim StockChange As Decimal = @

Dim StockPrice As Decimal = @
Dim StockName As String = ©

Select Case identifierl

Case "name"

StockName = SubArraylList(0)
Return StockName

Case "price"
StockPrice = SubArraylList1(0)
Return StockPrice

Case "change"
StockChange = ArrayList(3)
Return StockChange

Case Else
Return "?"

End Select

INVESTU — J—H-----

94

And the following is the new code;

Function SplitStockInfo(ByVal StringToSplit As String, ByVal DetailsToExtract As String)
Dim ExtractedDetails As String = ""

Dim ArrayList() As String = StringToSplit.Split(":")
Dim SubArrayList() As String = ArraylList(1).Split(",")
Dim SubArraylListl() As String = ArrayList(2).Split(",")

Select Case DetailsToExtract

Case "Name"
If Trim(SubArraylList(@)) = "#N/A" Then
ExtractedDetails = "ERROR"
Else
ExtractedDetails = Trim(SubArraylList(0))
End If

Case "Price"
If Trim(SubArraylList1(0)) = "#N/A" Then
ExtractedDetails = "ERROR"
Else
ExtractedDetails = Trim(SubArraylList1(0))
End If

Case "Change"
If Trim(ArrayList(3)) = "#N/A" Then
ExtractedDetails = "ERROR"
Else
ExtractedDetails = Trim(ArrayList(3))
End If

End Select

Return ExtractedDetails
End Function

The concept remains the same; the function uses a select-case to find and return the correct information,
however this time there is a conditional on each case to check that the value is not ‘#N/A’. We know if
there is an error, the value will always be #N/A’, so it is safe to hard wire this value into the condition.
Also added is the use of the ‘“Trim’ function, which removes any leading or trailing whitespace on the
values. This is a precautionary addition just incase there happens to be whitespace that affects how data
is displayed in future developments.

INVESTU — J—H----- 95

Error 2

This error occured because of the ‘UpdateBalance’ sub-routine, which updates the users balance after a
position is closed.

Sub UpdateBalance(ByVal Balance As Integer, ByVal Price As Integer, ByVal Quantity
As Integer)

Balance = Balance + (Quantity * Price)
BalanceBox.Text = "£" & Balance / 100

End Sub

By updating the UpdateBalance sub-routine to not accept a balance argument, and instead use the
balance variable, and changing the data type of the price from integer to decimal, the simulation now
accurately updates the balance to the correct value after a position is closed.

Sub UpdateBalance(ByVal Price As Decimal, ByVal Quantity As Integer)

Balance = Balance + (Quantity * Price)
BalanceBox.Text = "£" & Balance / 100

End Sub

INVESTU — J—H----- 96

Testing 2 - Investu Development 1

Show the
user is able to
close open
positions and
that the
simulation
registers the
sell action,
updating the
users balance
and portfolio

E [vestu W1
Select Stock: Mame Graph
|BARC.L | | BARCLAYS |
209.4
Price Change
s |206.4 04 |
208.2
207
205.¢
204.€
| Close Position 203.4
Current Balance: |£100000 |
E Imvestu V1
Select Stock: Mame G
[BARCL ~| | BARCLAYS |
Price Change
BUY |206.4 0.4 |

[] BARCLAYS - 48445 -206.4

Close Position

Cument Balance: |£1.26

=1

INVESTU — J—H---

E [vestu V1

Select Stock: Name Grap
IBARCL ~| | BARCLAYS |
Price Change
B |206.4 04 |

| Close Position |

Curent Balance: |£100000.00000000 | 5

This sequence of three screenshots shows a successful buy and sell of a
guantity of stock.

1) Before any trade is made, the balance is £100,000

2) After the maximum possible number of shares is bought, the user is left
with £1.26

3) After the position is closed, the balance returns to exactly £100,000
(trailing O’s left to show accuracy) and the position is removed from the
list of open positions.

INVESTU — J—H-----

98

Show the

E Investu Y1
user’s buy
registers and Select Stock: Mame
is displayed in ~| |ABERDEEN ASSETMGMT |
the portfolio Price S
box, and the BUY [31633 ERROR |
balance is
updated
correctly.

Show that no
errors occur
even when
querying
companies no
longer in the
FTSE 100.

Close Position

Current Balance: |£100000 |

Previously, clicking on this option threw an error. After the changes to the code,
the value of any value that is returned as ‘#N/A’ will be set to ‘ERROR’, and the
simulation will run as expected.

INVESTU — J—H-----

Feedback #3 — Client — Investu Development 1

Development 1 provides the functionality for the simulation to perform at its most basic level. To ensure
that the vision for this program is still on track and in line with that of the client and users, it is important to
stay in communication. The following interview therefore took place to ensure that the final product of
Development 1 is as expected and performing as intended, in the mind of the end user.

Ben, a student participating in the Student Investor Challenge, was given access to Development 1 in
order to test the simulation. The following is a dialogue that took place afterwards. (dialogue editted for
brevity)

“Ben — bearing in mind that this is an initial development of the simulation, what do you think of
Investu so far?”

“After having a little look around | really like it. It's kind of similar to the SIC software but it feels a lot
easier to use and looks a lot better. | really like the graph on the side, and the fact you can instantly fetch
price information for each stock, with a single click. That makes it really clear.”

“Have you tried trading on the simulation?”

“Yes — I've been buying and selling for a few minutes and it's been really interesting — the fact there are
no fees yet means you can invest in a company and then watch the graph until the price changes and
then sell it instantly — it’s really fun anticipating whether or not it’ll rise or fall. | haven’t been able to profit
much because the prices are only changing by a tiny bit eachchange, and I've only been using it a few
minutes so there hasn’t really been any noticeable price changes. To see any real returns | reckon you'd
have to put your whole balance in and leave it a few minutes, or make an investment and leave it for
hours or a few days. It's a shame that everything resets after closing it.”

“What are you looking forward to in the future developments?”

“Well being able to keep progress would be great — I'm sure when thats possible it'll be really fun to try
and keep a running progress over a few weeks. It's also going to be a lot easier to invest when theres
some help choosing what to invest in, stuff like news, because at the moment it's a bit of a random guess.
The graph is also good but it doesn’t show much at the moment. It only starts showing anything from the
time you load the program. It will be much clearer when it shows a bigger picture of the price of the
stocks.”

INVESTU — J—H----- 100

Final Conclusion — Investu Development 1

Development 1 has successfully fulfilled some of the basic criteria set out by the client, and is in a good
position to be build upon in order to fulfil the remaining criteria required. Fundamentally, the simualtion
now does what is needed, however without the features needed for the program to be a viable solution.

In the analysis of this simulation, a feature list and an objectives list was created using feedback from the
client and the user. Now that development 1 has been implemented, we can see how many of this criteria
have been met, and the goals for the second development of the program.

(The items highlighted in green have been successfully implemented into development 1, as shown in the
development 1 testing phase in the previous section)

Ability to create and login to accounts (client)

Ability to join and trade on a team account (client)

Ability for users to be designated as admins (client)

Ability for account progress on team and personal accounts to be saved between sessions
(inferred from client and user)

Ability for admins to view teams list (inferred from client)

Ability for admins to view team details and progress (inferred from client)

Graph to show all time price changes of all stocks (inferred from user)

Ability to create price alerts and be notified when stock reaches current price (inferred from user)
Interface allowing users to see all current alerts on their account (inferred from user)

Interface allowing user to see entire trade history (SIC)

Interface allowing user to see all stocks in the FTSE 100 in a single screen, with details such as
price (SIC)

Notes section displayed in trade history and portfolio with reasons for trade decision (user)

In the next development of the program the aim is to successfully connect the database to the program,
allowing for the storage of data related to the FTSE 100 and the user account. This will allow for a login
system, as well as a teams system and the ability to save information relating to these two features.
Furthermore, once the database is connected, it will be possible to begin collecting stock market data and
storing it. This will require a small, additional program, that will operate on a server 24/7 in order to collect
data.

INVESTU — J—H----- 101

Develop
ment 2

Database — InvestuServerProgram - Development 2

The server program will output data into a database. This database will be called ‘StockinfoDB’ and will
be in the MDB file format.

The first table in the database will be called ‘tblStockPriceHistory’. This table will store all of the price
history for each of the stock symbols in the FTSE100.

The following is a screenshot of the entity relationship diagram for the database. Currently there is only
two tables, which are not linked, and so no relationships can be drawn.

tblStockPriceHistory

2D tblCrash
StockSymbol %D
StockPrice CrashMsg
FetchTime CrashTime
FetchDate

Inside the main table, the format is as follows: (Some sample data has been written to the table)

| - Relatinnships\i gz ﬂﬂhﬂPmelishuy\
1D ~ | StockSymbc - | StockPrice - FetchDate -
131908 AALL 1673.99 04/02/2018 21:10:56
1319035 ABF.L 2733.75 04,/02/2018 21:10:57
131910 ADM.L 1854 04/02/2018 21:10:58
131911 ADM.L 316.33 04,/02/2018 21:10:59
131912 AGK.L JE0.8 04/02/2018 21:11:00
131913 AMEC.L 1] 04/02/2018 21:11:01

INVESTU — J—H----- 103

Investu Server Program — Version 1 — Development 2

In addition to the main simulation, Development 2 brings about the need for an additional program. This
program will be called InvestuServerProgram, and will run 24/7 on a server inside the school building.
The purpose of this program is to collect stock market data for use in the simulation. By connecting the
program to a database, information can be gathered and stored, which can then be used to extend
information provided to the user in the main simulation, such as price history over the last X hours. Some
other features proposed in the initial analysis will also require this server program; the alerts system for
example, which will alert the users to when a stock reaches a certain price, even when they are logged
out of the simulation. This feature will come later in the development of the simulation.

Imports/Namespaces — InvestuServerProgram - Development 2

Imports System.IO
Imports System.Xml
Imports System.Data.OleDb

‘Imports’ here allows for types that are contained in a given namespace to be referenced directly. 3
namespaces are utilized in InvestuServerProgram:

e System.lO — This namespace handles the manipulation of files

¢ System.XML — Handles the manipulation and processing of XML data

e System.Data.OleDB — OLE DB stands for Object Linking and Embedding Database, which is an
API allowing the access of data from various sources, in this case Microsoft Access. Importing
this namespace allows us to easily manipulate a database using SQL.

INVESTU — J—H----- 104

Global Variables — InvestuServerProgram - Development 2

Public Class MainForm

Dim DBPath As String = "C:\Users\Joe\Documents\visual studio 2010\Investu
Writeup\Development 2\StockInfoDB.mdb"

Public AccessDatabaseConnection As String = "Provider =
Microsoft.Jet.OLEDB.4.0;Data Source =" & DBPath

Dim LoopCount As Integer = ©
Public Symbols As New List(Of String)

InvestuServerPorgram has 3 global variables in this development.

Dim DBPath As String = "C:\Users\Joe\Documents\visual studio 2010\Investu
Writeup\Development 2\StockInfoDB.mdb"

Firstly, we the information for connecting to the database is defined. ‘DBPath’ here is simply the file
location of the database. In this case, the database is called ‘StockinfoDB.mdb’. ‘mdb’ stands for
Microsoft Access Database and is the standard file type when use Microsoft Access.

Public AccessDatabaseConnection As String = "Provider = Microsoft.Jet.OLEDB.4.0;Data
Source =" & DBPath

Secondly, we define ‘AccessDatabaseConnection’ which is contains the configuration for connecting to
the database. The syntax for this consists of ‘Provider=""Data Source="". ‘Provider’ in this case is
Microsoft.Jet.OLEDB.4.0 which is the standard format for the file type being used. ‘Data Source’ is simply
the file pathway of the database, which was defined in the previous line as ‘DBPath’. The concatenation of
these two strings results in a variable that can be called at any time to initiate a connection to the database.

Dim LoopCount As Integer = 0@

‘LoopCount’ will be used to keep track of how many times the program has looped through a query, so that it is
easy to keep track of when to perform a reset. In this case, the program will have to reset once every stock
symbol has been queried. LoopCount has to be made a global variable because it will be used alongside a
timer. If it was declared inside the [timer.tick’ sub-routine, then it would be effectively redefined and lose its
value every tick. For this reason it is defined globally and simply referred back to in the timer.tick sub-routine.

Public Symbols As New List(Of String)

In this version of the program, the stock symbols for the companies in the FTSE 100 will be fetched from
a .CSV file, instead of being hard-coded directly into the program. To prepare for this, a list object is created,
that can have items appended to the end.

INVESTU — J—H----- 105

MainForm_Load — InvestuServerProgram - Development 2

Private Sub MainForm_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.lLoad

RunningStoppedLabel.Text = "STOPPED"
RunningStoppedLabel.ForeColor = Color.Red

PopulateSymbolList("C:\Users\Joe\Documents\visual studio 2010\Investu
Writeup\Development 2\StockSymbols.csv")
End Sub

When MainForm of InvestuServerProgram is loaded, some formatting occurs that visually displays the
current state of the program — which is in this case stopped, and the symbols list declared earlier is
populated with symbols. This is done by passing the file location of the .CSV file containing the symboals,
to the sub-routine ‘PopulateSymbolList’.

PopulateSymbolArray — InvestuServerProgram - Development 2

Public Sub PopulateSymbolList(ByVal FilePath As String)
Dim CSVData() As String

Using SR As New StreamReader(FilePath)
While Not SR.EndOfStream
CSVData = SR.ReadLine().Split(",")
If String.IsNullOrEmpty(CSVData(@)) Then
MsgBox("Error Null Value")
Else
Symbols.Add(CSVData(®).Trim)
End If
End While
End Using

End Sub

PopulateSymbolList is used to extract all of the symbols stored in StockSymbols.CSV, and use them to
populate a list.

Using SR As New StreamReader(FilePath)

End Using

StreamReader is a text reader in the System.lO namespace, which reads characters from a byte stream.
In this code, a ‘Using’ statement declares ‘SR’ as a StreamReader, and passes the value of FilePath to
the stream reader. By calling StreamReader here, a new instance is initialized, with the stream specified
as FilePath.

While Not SR.EndOfStream

End While

INVESTU — J—H----- 106

‘EndOfStream’ is a built in property of StreamReader that gives a boolean value indicating whether or not
the current position in the stream is the end of the stream or not. This While loop will continue to loop
while EndOfStream is false.

CSVData = SR.ReadlLine().Split(",")

Inside the While loop, a value is assigned to CSVData, a variable defined earlier in the sub-routine. The
value is equal to the value on the current line, split by a comma. Each value has been written to the .CSV
file seperated by a comma, and so this line of code splits these values up, and assigns the value of the
split symbol into CSVData.

If String.IsNullOrEmpty(CSVData(@)) Then
MsgBox("Error Null Value™)

Else
Symbols.Add(CSVData.Trim)

End If

The next section of code is a conditional statement, which is used as a validation check to prevent erros
later in the code. The condition checks to see if the value of CSVData is null or empty. This could be
caused by incorrect values in the .CSV file, but they are avoided through this conditional. Assuming the
value of CSVData is not null or empty, the value is trimmed to remove any leading or trailing whitespace,
and then added to the Symbols list.

INVESTU — J—H----- 107

StartButton_Click — InvestuServerProgram - Development 2

Private Sub StartButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles StartButton.Click

Timerl.Start()

RunningStoppedLabel.Text = "RUNNING"
RunningStoppedLabel.ForeColor = Color.Green

End Sub

This sub-routine starts the timer about which this program revolves. Each tick of the timer will cause new
information to be fetched from the internet and stored in the database. The visual display of the program
is updated so that the user can see that the programs current state is running.

INVESTU — J—H----- 108

Timerl_Tick — InvestuServerProgram - Development 2

Private Sub Timerl_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Timerl.Tick

If LoopCount > 99 Then
LoopCount = ©
RecentPricesBox.Clear()

End If

FetchLatestStockInfo()
LoopCount += 1

End Sub

The tick of this timer is integeral to the operation of the server program. The basic premise is that for
every tick of the timer, the information for the symbol whos value is stored at the index value LoopCount

in SybolArray, will be fetched, and stored to the database. LoopCount is incremented, so that the next tick,
a new symbol is queried, and so on until all of the symbols have been queried, at which point the value of
LoopCount resets to 0, and the symbols are queried again from the beginning.

The timer interval is set to one second. One query per second is managable for the program, and will
mean that there is little threat of a stack overflow error occuring. If the value of the timer interval was any
lower than one second, there is a chance that before one query has finished, the next query would be
called, which would eventually lead to a stack overflow.

INVESTU — J—H----- 109

FetchLatestStockInfo — InvestuServerProgram - Development 2

Sub FetchLatestStockInfo()

Timerl.Interval = 1000
Dim StockPrice As Decimal = GetStockPrice(Symbols(LoopCount))
Dim StockChange As Decimal = GetStockChange(Symbols(LoopCount))

If TimeOfDay.Hour > 8 And TimeOfDay.Hour < 16.5 Then
Try

UpdateDatabase(Symbols(LoopCount), StockPrice, StockChange)
RecentPricesBox.Text += FormatString(LoopCount, Symbols(LoopCount),
StockPrice, StockChange)

Catch errorVariable As Exception

StoreCrashInfo(errorVariable.ToString(), DateTime.Now)

If ShowErrorCheckBox.Checked = True Then
Timerl.Stop()
MsgBox(errorVariable.ToString())
RunningStoppedLabel.Text = "STOPPED"

End If

End Try
End If

End Sub

This sub-routine is called every time the timer ticks. It fetches the information relating to the stock
currently stored at the index value of LoopCount in the Symbols array.

Timerl.Interval = 1000

Initially, the interval of the timer is reset back to 1 second. This is important so that if the interval for any
reason changes, it is reset as quick as possible so that the interval between collecting data from each
symbol is consistent.

Dim StockPrice As Decimal
Dim StockChange As Decimal
StockPrice = GetStockPrice(Symbols(LoopCount))
StockChange= GetStockChange(Symbols(LoopCount))

Next, StockPrice and StockChange are declared and set to their current value, using the GetStockPrice
and GetStockChange functions. These functions both accept one argument, which in both cases is
‘Symbols(LoopCount). This means that the symbol whose information is retrieved is the symbol whos
index value in the Symbols list is ‘LoopCount’.

INVESTU — J—H----- 110

If TimeOfDay.Hour > 8 And TimeOfDay.Hour < 16.5 Then

End If

This conditional uses TimeOfDay.Hour, a built in VB value, to check the time of day. If the time is after
8:00am and 16:30pm, then the code in the conditional will execute. If the current time is not within those
times, then the code will not execute. This check is here because these times are the FTSE100 trading
hours. Outside of these hours, the prices will never change as it is not possible to trade on any stock in

the FTSE100. By adding this conditional, we can avoid wasteful processing on the server and save
memory in the database by not adding redundant data.

Try

Catch ErrorVariable As Exception

StoreCrashInfo(ErrorVariable.ToString(), DateTime.Now)
If ShowErrorCheckBox.Checked = True Then
Timerl.Stop()
MsgBox(ErrorVariable.ToString())
RunningStoppedLabel.Text = "STOPPED"
End If
End Try

This Try-Catch is used to avoid errors that arise during the process of fetching and storing stock
information in the InvestuServerProgram.

Firstly, the program attempts to store the error information into the database, using a sub-routine called
StoreCrashlnfo, which accepts two arguments; the error variable and the current time. This information is
useful for debugging purposes as this program will run for days and weeks without human interaction,
and so it can be difficult to know when or why the program crashed, if an error does occur. By storing the
error and time debugging is made easier.

Next, a conditional checks if a checkbox on the user interface is checked. If this checkbox is ticked, the
program will stop, because timerl.stop is called. Then, a message box will appear showing the error
variable, and the interface will be updated to show that program is in a stopped state. If the checkbox is
not ticked, then the error variable is stored into the database but none of the other code executes. It is
useful to have these two modes, having the program stop if an error occurs can be useful for debugging,
but would not be useful when the simulation is in use by users, as it would mean their simulations would
stop receiving data.

INVESTU — J—H----- 111

UpdateDatabase(Symbols(LoopCount), StockPrice, StockChange)
RecentPricesBox.Text += FormatString(LoopCount, Symbols(LoopCount), StockPrice,
StockChange)

Inside the Try-Catch are two calls to sub-routines. The first of these calls is a call to UpdateDatabase.
UpdateDatabase accepts 3 arguments; A symbol, about which information is to be stored, a price value,
and a change value. This then adds the relevant information to the database.

The next call is to a sub-routine called FormatString, which simply takes information and formats it. This
newly formatted string is added to a text box which works as a visual display for the user to see how the
server program is operating.

FormatString — InvestuServerProgram - Development 2

Function FormatString(ByVal A As Integer, B As String, C As String, D As String)
Dim FormattedString As String

B = B & Space(1@ - B.Length)
C = C & Space(10 - C.Length)
D = D & Space(10 - D.Length)

FormattedString = A & Space(5) & B & C & D & vbCrLf
Return FormattedString
End Function

FormatString simply takes the values passed and spaces them equally, to create a clear visual display for
the user. The function takes and integer and two strings, and then formats them in such a way that the
start of each piece of information.

INVESTU — J—H----- 112

UpdateDatabase — InvestuServerProgram - Development 2

Sub UpdateDatabase(ByVal StockSymbol As String, ByVal StockPrice As Decimal, ByVal
StockChange As Decimal)

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
cmd.CommandText = "INSERT INTO tblStockPriceHistory (StockSymbol, StockPrice,
FetchTime, FetchDate) VALUES ('" & StockSymbol & "','" & StockPrice & "','" &

TimeOfDay & "','" & Date.Now & "')"
cmd. ExecuteNonQuery()

ConnectionDb.Close()

End Sub

UpdateDatabase takes three arguments and uses them to create a new entry into the database.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

ConnectionDb.Close()

This code declares as variable, connectionDB, as a new connection the database. ‘OleDbConnection’ is a
type built into the OleDb namespace that was imported earlier. It takes one value, which is the connection
string. This was defined earlier in the code. Once this connection is created, its default state is closed.
Therefore, the next line of code checks the state, and if it is found to be closed, the connection is opened,
meaning the database is now accessible to edit. The final line of code makes sure that the connection is
closed after the database has been editted. This is important, as trying to access the database multiple
times without closing connections first can result in concurrency issues and crashes.

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

Once a connection has been established, a new command can be created. This is done via the
‘ConnectionDb.CreateCommand’ command. Once the command is created, it needs text that will be
executed. This is done via ‘cmd.CommandText ='. In this case, data is being written to the database, and
so an insert command is used.

cmd.CommandText = "INSERT INTO tblStockPriceHistory (StockSymbol, StockPrice,
FetchDate) VALUES ('" & StockSymbol & "',"'" & StockPrice & "','" & Date.Now & "')"
cmd . ExecuteNonQuery ()

The sytax of an ‘Insert’ command is as follows;
INSERT INTO tableName (columnName) VALUES (value)

INVESTU — J—H----- 113

Therefore in this statment, we are inserting into the table ‘tblStockPriceHistory’, specifically the three

columns StockSymbol, StockPrice and FetchTime. The value inserted are StockSymbol, StockPrice and

the current date.

SplitStockiInfo — InvestuServerProgram - Development 2

String)

Dim ExtractedDetails As String =

Select Case DetailsToExtract

Case "Name"
ExtractedDetails = Trim(SubArraylList(0))

Case "Price"
ExtractedDetails = Trim(SubArrayList1(0))
If ExtractedDetails = "#N/A" Then
ExtractedDetails = "0@"
End If

Case "Change"
ExtractedDetails = Trim(ArrayList(3))
If ExtractedDetails = "#N/A" Then
ExtractedDetails = "0@"
End If

End Select
Return ExtractedDetails
End Function

Function SplitStockInfo(ByVal StringToSplit As String, ByVal DetailsToExtract As

Dim ArrayList() As String = StringToSplit.Split(":")
Dim SubArrayList() As String = ArraylList(1).Split(","
Dim SubArraylListl() As String = ArraylList(2).Split(","

The code here is taken from Testing 2 in Development 2 on page 96.

INVESTU — J—H-----

114

GetStockChange — MainForm - InvestuServerProgram - Development 2

Function GetStockChange(ByVal StockSymbol As String)

Dim StockChange As Decimal
Try

Dim document As XmlDocument
Dim nodelist As XmlNodelList
Dim node As XmlNode

document = New XmlDocument()

document.Load("https://spreadsheets.google.com/feeds/1list/0AhySzEddwIC1dEtpWFOhQUhCWUR
ZNEViUmpUeVgwdGc/1/public/basic?sgq=symbol=" & StockSymbol)
nodelist = document.GetElementsByTagName("entry")

For Each node In nodelist
StockChange = SplitStockInfo(node.ChildNodes.Item(4).InnerText,
"Change")
Next
Catch errorVariable As Exception
Timerl.Stop()
End Try
Return StockChange
End Function

‘GetStockChange’ is a function that has a single parameter — ‘StockSymbol’, which the function uses to
retrieve the ‘Change’ value for the relevant stock. This is done via querying the Google Sheets sheet with
the symbol link appended to the end, and then splitting the resulting string for the ‘Change’ value.

This process of retrieving stock information from the internet using XML is detailed between pages 27
and 31.

The origin of this sub-routine including a detailed code explaination can be found in Development 1 on
page 64.

INVESTU — J—H----- 115

GetStockName — MainForm - InvestuServerProgram - Development 2

Function GetStockName(ByVal StockSymbol As String)

Dim StockName As String = "Error"
Try

Dim document As XmlDocument
Dim nodelist As XmlNodelList
Dim node As XmlNode

document = New XmlDocument()

document.Load("https://spreadsheets.google.com/feeds/list/0AhySzEddwIC1dEtpWFOhQUhCWUR
ZNEViUmpUeVgwdGc/1/public/basic?sgq=symbol=" & StockSymbol)
nodelist = document.GetElementsByTagName("entry")

For Each node In nodelist
StockName = SplitStockInfo(node.ChildNodes.Item(4).InnerText, "Name™)

Next
Catch errorVariable As Exception
Timerl.Stop
End Try
Return StockName
End Function

‘GetStockName’ is a function that has a single parameter — ‘StockSymbol’, which the function uses to
retrieve the ‘Change’ value for the relevant stock. This is done via querying the Google Sheets sheet with
the symbol link appended to the end, and then splitting the resulting string for the ‘Change’ value.

This process of retrieving stock information from the internet using XML is detailed between pages 27
and 31.

The origin of this sub-routine including a detailed code explaination can be found in Development 1 on
page 64.

INVESTU — J—H----- 116

GetStockPrice — MainForm - InvestuServerProgram - Development 2

Function GetStockPrice(ByVal StockSymbol As String)

Dim StockPrice As Decimal

Try
Dim document As XmlDocument
Dim nodelist As XmlNodelist
Dim node As XmlNode
document = New XmlDocument()

document.Load("https://spreadsheets.google.com/feeds/list/0AhySzEddwIC1dEtpWFOhQUhCWUR
ZNEViUmpUeVgwdGc/1/public/basic?sqg=symbol=" & StockSymbol)
nodelist = document.GetElementsByTagName("entry")

For Each node In nodelist
StockPrice = SplitStockInfo(node.ChildNodes.Item(4).InnerText,
"Price")
Next
Catch errorVariable As Exception
Timerl.Stop()

End Try
Return StockPrice

End Function

‘GetStockPrice’ is a function that has a single parameter — ‘StockSymbol’, which the function uses to

retrieve the ‘Change’ value for the relevant stock. This is done via querying the Google Sheets sheet with

the symbol link appended to the end, and then splitting the resulting string for the ‘Change’ value.

This process of retrieving stock information from the internet using XML is detailed between pages 27
and 31.

The origin of this sub-routine including a detailed code explaination can be found in Development 1 on
page 64.

INVESTU — J—H-----

117

StoreCrashinfo — MainForm - InvestuServerProgram - Development 2

Sub StoreCrashInfo(ByVal CrashMsg, ByVal CrashTime)

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "INSERT INTO TblCrash (CrashMsg, CrashTime) VALUES ('" &
CrashMsg & "',"'" & CrashTime & "')"

cmd. ExecuteNonQuery ()

ConnectionDb.Close()

End Sub

End Class

Store crash info is a sub-routine used to store in the information relating to crashes in
‘InvestuServerProgram’. This sub-routine will be useful for debugging purposes, as the resulting database
entries can be looked at for information relating to crashes, which can then help to fix bugs.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
The sub-routine begins by connecting to the database. A new command is created via the

‘CreateCommand’ method.

cmd.CommandText = "INSERT INTO TblCrash (CrashMsg, CrashTime) VALUES ('" & CrashMsg &
"','" & CrashTime & "')"

The command text is an Insert command, that inserts two values into the table ‘tblCrash’. These values
are the exeception that was thrown, or ‘CrashMsg’, and the current time, or ‘CrashTime’.

cmd. ExecuteNonQuery ()
ConnectionDb.Close()

The command is executed and the connection to the database is closed.

INVESTU — J—H----- 118

Investu Simulation — Development 2

This development of the simulation will include the ability for users to log into their personal and team
accounts. This means that Development 2 requires a form that allows users to create an account, and a
form that allows users to login to their account. These will be call SignUpForm and LoginForm
respectively.

This development of the simulation will also incorporate the team system which works as follows:

Teams can be created; which users can join. When a user is part of a team, they will have the choice
upon logging in, to either load into the team account — an account accessible by themselves and the other
3 members of their team, or to load into their personal account. This choice will be determined by a
checkbox in LoginForm. When a user logs into a team account, their progress will be saved to that
account rather than their personal account.

INVESTU — J—H----- 119

Database 2 — Investu — Development 2

With the addition of SignUpForm and LoginForm, comes the need for additional tables in the database.

thiTeams

% TeamlD
TeamMame
Balance
TeamCode

thlStockPriceHistory

%D
StockSymbol
StockPrice
FetchTime
FetchDate

[\<

thlCrash

¥ D

CrashMsg
CrashTime

tbiTeamUsers

¥ TeamUsersiD
AccountlD
TeamlD

tblUserInfo

¥ AccountiD
Username
Passwrd
Balance
Admin
Email

N

thlOpenPositions

StockQuantity
BuyPrice
TradeDate
AccountlD

7 OpenPaosition|C
StockSymbol

torkhlame

»

The additional tables are as follows:

¢ tblUserIinfo — A table for storing the data relating to individual users in the simulation. Every new
user has their own entry in the table, with data such as name, password and balanced stored.

o thlTeams — A table for storing the data relating to the teams in the simulation.

o thiITeamUsers — A link table for linking users to teams and vice versa. This tracks which users are
members of each team.

e thlOpenPositions — Used for storing the currently open positions that users have. The position
has an attribute that states the accountID that executed the trade, which will allow the simulation
to load open positions that were made in the past.

INVESTU — J—H-----

120

SignUpForm — Investu - Development 2

SignUpForm untilises the database to create new accounts, that will then be accessible later on. These
accounts will allow users to save their information such as balance and portfolios, meaning they can keep
their progress even after logging out of the simulation. This will help to improve the user experience of the
simulation, and the effectiveness of the program in reaching its desired goal.

Global Variables — SignUpForm — Investu Development 2

Public Class SignUpForm

Dim AccessDatabaseConnection As String = MainForm.AccessDatabaseConnection

In this form, the is only one global variable — the database connection string. The value of this string is
fetched from MainForm. If the location of the database changes, then by fetching the connection string
from MainForm, it means that only the string in MainForm needs to be changed.

SignUpButton_Click — SignUpForm - Investu Development 2

Private Sub SignUpButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CreateAccountButton.Click

If ProceedToSignUp() Then
CreateNewAccount(UsernameBox.Text, PasswordBox.Text, EmailBox.Text)

LoginForm.UsernameTextBox.Text = UsernameBox.Text
LoginForm.PasswordTextBox.Text PasswordBox.Text

MsgBox("Your account has been created! Click login to proceed.™)

Me.Close()
End If

This sub-routine occurs when the user clicks the ‘Sign Up’ button. The user interface will have a series of
input boxes, followed by a ‘Sign Up’ button. Upon clicking this button, this code is executed.

If ProceedToSignUp() Then

End If

First, the conditional calls the function ‘ProceedToSignUp’ to check that the user credentials entered are

valid. This validation check is made to ensure that a user does not try to create an account that already
exists.

Once the condition of the conditional has been met, the sub-routine ‘CreateNewAccount’ is called. This is
the sub-routine that is responsible for inputting the users new account information into the database.

INVESTU — J—H----- 121

CreateNewAccount(UsernameBox.Text, PasswordBox.Text, EmailBox.Text)

LoginForm.UsernameTextBox.Text = UsernameBox.Text
LoginForm.PasswordTextBox.Text = PasswordBox.Text

MsgBox("Your account has been created! Click login to proceed.")

Me.Close()

The following 2 lines of code affect LoginForm. They change the values of the username and password
boxes to contain the information of the account just created. This is a quality-of-life addition to the code
that simply makes the sign-up and login experience easier for the user. A message box appears that
informs the user that they have successfully created an account, and then the form is closed, displaying
the LoginForm behind.

INVESTU — J—H----- 122

ProceedToSignUp — SignUpForm - Investu Development 2

Function ProceedToSignUp()

If ValidatePassword(PasswordBox.Text) Then
If ValidUsername(UsernameBox.Text) Then
If ValidEmail(EmailBox.Text) Then
Return True
Else
MsgBox("The email you have entered is invalid")
End If
Else
MsgBox("The username you have entered is already taken.")
End If
Else
MsgBox("Invalid Password - Passwords must have at least 1 upper case
character, 1 number and 8 total characters.")
End If

Return False
End Function

The purpose of this function is to validate the inputs of the user. The function consists of three nested
conditionals, each one checking if one aspect of the user information is valid; username, password and
email. The reason there are three conditional instead of one with the conditions joined together by ‘And’,

is to make it easy to differentiate between errors, so that the user can be advised which section of their
sign up process did not pass validation.

INVESTU — J—H----- 123

ValidUsername — SignUpForm - Investu Development 2

Function ValidUsername(ByVal NewUsername As String)

If UsernameBox.Text = "" Or PasswordBox.Text = "" Then
ErrorMsg = "The Username and Password are required fields."
Return False

Else

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand
Dim SQLReply As OleDbDataReader

cmd = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT Username FROM tblUserInfo"
SQLReply = cmd.ExecuteReader

For Each Record In SQLReply

If Record.item("Username") = NewUsername Then
Return False
End If
Next

ConnectionDb.Close()
End If

Return True
End Function

If UsernameBox.Text = "" Or PasswordBox.Text = "" Then
ErrorMsg = "The Username and Password are required fields."
Return False

Else

The first validation check inside CheckUsername checks that neither the Username box or Password box

are empty.

INVESTU — J—H-----

124

Then, a select query is set up. This constitutes first connecting to the database, and then creating a new
command in SQL, which is this case is:

SELECT Username FROM tblUserInfo

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand
Dim SQLReply As OleDbDataReader

cmd = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT Username FROM tblUserInfo"
SQLReply = cmd.ExecuteReader

This SQL command will select every username from the table ‘tblUserInfo’. Now that all of the usernames
have been fetched, a linear search can be carried out in order to find whether or not the username
already exists.

For Each Record In SQLReply
If Record.item("Username") = NewUsername Then
Return False
End If
Next
ConnectionDb.Close()

This For-loop takes every username returned from the database after the query, and compares it to
‘NewUserName’, a value passed to the function, that contains the username the user is trying to sign up
with. If a successful comparison between a fetched username and the new username is made, then false
is returned. The connection to the database is then closed.

After this check, if the function has still not exited by returning false, it means the value of NewUsername
is valid and the function returns true.

INVESTU — J—H----- 125

ValidatePassword - SignUpForm — Investu Development 2

Function ValidatePassword(ByVal Password As String, Optional ByVal MinLength As
Integer = 8, Optional ByVal NumUpper As Integer = 1, Optional ByVal NumLower As
Integer = 1, Optional ByVal NumNumbers As Integer = 1, Optional ByVal NumSpecial As
Integer = @) As Boolean

Dim UpperCase As New System.Text.RegularExpressions.Regex("\p{Lu}")
Dim LowerCase As New System.Text.RegularExpressions.Regex("[a-z]")
Dim Numbers As New System.Text.RegularExpressions.Regex("[0-9]")

Dim Specials As New System.Text.RegularExpressions.Regex("[~a-zA-Z0-9]")
If Len(Password) < MinLength Then Return False

If UpperCase.Matches(Password).Count < NumUpper Then Return False

If LowerCase.Matches(Password).Count < NumLower Then Return False

If Numbers.Matches(Password).Count < NumNumbers Then Return False

If Specials.Matches(Password).Count < NumSpecial Then Return Fals

Return True
End Function

Function ValidatePassword(ByVal Password As String, Optional ByVal MinLength As Integer =
8, Optional ByVal NumUpper As Integer = 1, Optional ByVal NumLower As Integer = 1,
Optional ByVal NumNumbers As Integer = 1, Optional ByVal NumSpecial As Integer = @) As
Boolean

This function has 6 parameters that allow for the customization of the requirements of the users password.
The parameters are Password, which contains the users chosen password; MinLength, which determines
how long the chosen password must be; NumUpper, which determines the number of upper case letters
that the password must have; NumLower which determines the number of lower case letters that the
password must have, NumNumbers which determines the number of numbers that the password must
have and NumSpecial which determines the number of special characters that the password must have.

Firstly, these values are declared. They corrospond to the parameters of the function. These values are
declared as RegularExpressions. RegularExpressions are a way of defining the syntax of strings. At the
end of the declaration, in the brackets, the syntax of the string is written. Each section defines certain
values, for example [a-z] means all values between a-z, and [~a-zA-Z0-9] means ‘all values not
included in the sets ‘a-z, A-Z, 0-9’; therefore this defines the syntax for special characters, which do not fit
into those categories.

Dim UpperCase As New System.Text.RegularExpressions.Regex("\p{Lu}")

Dim LowerCase As New System.Text.RegularExpressions.Regex("[a-z]")

Dim Numbers As New System.Text.RegularExpressions.Regex("[0-9]")

Dim Specials As New System.Text.RegularExpressions.Regex("["a-zA-Z0-9]")

INVESTU — J—H----- 126

CreateNewAccount — SignUpForm — Investu Development 2

Sub CreateNewAccount(ByVal Username As String, ByVal Password As String, ByVal Email
As String)

Dim Balance As Integer = 10000000

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand
cmd = ConnectionDb.CreateCommand

cmd.CommandText = "INSERT INTO tblUserInfo (Username, Balance, Passwrd) VALUES
('"" & Username & "','" & Balance & "','" & Password & ""')"

cmd. ExecuteNonQuery ()
ConnectionDb.Close()

End Sub

CreatenewAccount is responsible for inserting the new, validated account information into the database
does this through an INSERT’ SQL command, into which the values of the relevant attributes are
inserted.

cmd. CommandText = "INSERT INTO tblUserInfo (Username, Balance, Passwrd) VALUES ('" &
Username & "','" & Balance & "','" & Password & "')"

This is the SQL command. It is a basic Insert command that takes 3 values, corrosponding to the 3
values passed as arguments to the sub-routine when it is called.

INVESTU — J—H-----

t

127

LoginForm — Investu - Development 2

Global Variables - LoginForm — Investu Development 2

Public Class LoginForm
Dim AccessDatabaseConnection As String = MainForm.AccessDatabaseConnection

Public AccountID As Integer

Public Admin As Boolean

Public TeamName As String

Public TeamMode As Boolean = False
Public Username As String

Similarly to SignUpForm, login form has a global variable called ‘AccessDatabaseConnection’. This is
global for the same reasons as discussed in SignUpForm — Version 1.

The 5 following variables are all attributes of the account information. These values will all need to be
accessible to MainForm when it loads, and so they are defined globally here, using ‘Public’ so that they
can be accesed when needed.

INVESTU — J—H----- 128

Login_Click - LoginForm — Investu Development 2

Private Sub Login_Click(sender As System.Object, e As System.EventArgs) Handles
Login.Click
Username = UsernameTextBox.Text
If ValidUserLogin(Username, PasswordTextBox.Text) Then
LoadUserInfo(AccountID)
If Admin = True Then
AdminView.Show()
Me.Close()
Else
If TeamModeCheckBox.Checked Then
If TeamName = "" Then
MsgBox("You don't have a team!”)
Else
TeamMode = True
End If
End If
MainForm.Show()
Me.Close()
End If
Else
MsgBox("Invalid Username or Password.™)
End If
End Sub

Login_Click is a sub-routine that has the handle ‘Login.click’ which means it will be called when the ‘Login’
button is clicked. This is the button the user will press when they have entered all of their login credentials.

If ValidUserLogin(Username, PasswordTextBox.Text) Then

Else
MsgBox("Invalid Username or Password.™)
End If

The sub-routine is based off of a series of nested conditionals that work to validate the users login
credentials and work out which aspects of the simulation to load.

The first conditional calls the function ‘ValidUserLogin’, and passes two arguments; the users username
and pasword.

LoadUserInfo(AccountID)
If Admin = True Then
AdminView.Show()
Me.Close()
Else
If TeamModeCheckBox.Checked Then
If TeamName = "" Then
MsgBox("You don't have a team!")
Else
TeamMode = True
End If
End If

MainForm.Show()
Me.Close()

INVESTU — J—H----- 129

If the value of ‘ValidUserLogin’ returns as true, the above code runs. Firstly, the information of the user is
loaded through the sub-routine ‘LoadUserInfo’. This takes an argument that contains the user ID of the
account being logged into. The ID of the account is stored in a global variable called AccountID, which is
given a value inside the function ‘ValidUserlLogin’, after a username and password match is confirmed.
Next, the admin status of the user is checked. This is an attribute of the account that is stored as a
boolean value in the database, and determines whether or not the account has admin priveleges. If the
value is true, then a seperate form is loaded, called ‘AdminView’. This will be developed later, as it is not
the main focus of Development 2.

If the ‘Admin’ attribute of the account has a value of false, then a different conditional runs. This
conditional checks whether or not the user has decided to log into their team account, or their personal
account. When the user information is loaded, their team name is loaded. This value goes into the
variable TeamName. If ‘TeamName’ is empty, then it means that the user does not belong to a team. The
user would then be loaded into their personal account. Else, the value of ‘TeamMode’ is set to true, and
the MainForm is loaded.

ValidUserLogin - LoginForm — Investu Development 2

Function ValidUserLogin(ByVal Username As String, ByVal Password As String)

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)

If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "SELECT AccountID FROM tblUserInfo WHERE Username='" &
Username & "' AND Passwrd='" & Password & "'"

Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

For Each Record In SQLReply
AccountID = Record.item("AccountID")
Return True

Next

ConnectionDb.Close()

Return False

End Function

‘ValidUserLogin'’ is a function that has two parameters; usrename and password. It uses these to validate
the account credentials input by the user. It does this through a Select SQL command.

SELECT AccountID FROM tblUserInfo WHERE Username='" & Username & "' AND Passwrd='" &

Password &

The item selected is the account ID. This will be useful later in the program, as it is the primary key used
for identifying the users account. The account ID will be only be selected from the rows where the
‘username’ column is the value of the username input by the user, and the ‘passwrd’ column is the same
as the password input by the user, in the login phase. If these two values match, the account ID is fetched,
and the function returns true.

INVESTU — J—H----- 130

There could be concern that if there were two entities in the database with the same username and
password, then two account ID’s would be fetched. However, thanks to the validation checks done during
the sign-up phase, it is not possible to create two accounts with the same username.

LoadUserInfo - LoginForm — Investu Development 2

Sub LoadUserInfo(ByVal AccountID As Integer)

Dim UserValid As Boolean = False
TeamName = ""

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)

If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "SELECT tblTeams.TeamName FROM tblTeams, tblTeamUsers,
tblUserInfo WHERE tblTeams.TeamID = tblTeamUsers.TeamID AND tblTeamUsers.AccountID =
tblUserInfo.AccountID AND tblUserInfo.AccountID=" & AccountID & ""

Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

For Each Record In SQLReply

TeamName = Record.item("TeamName")
Next
SQLReply.Close()

cmd.CommandText = "SELECT Admin FROM tblUserInfo WHERE AccountID=" & AccountID
& "

Dim SQLReplyl As OleDbDataReader = cmd.ExecuteReader

For Each Record In SQLReplyl
Admin = Record.item("Admin™)
Next
ConnectionDb.Close()
End Sub

This sub-routine uses SQL commands, as previously discussed, to load the information of the user. The
sub-routine takes only one argument, which is the account ID of the account about which information is
being retrieved.

The syntax for this section of code is the same as previous Select commands discussed earlier.

INVESTU — J—H----- 131

MainForm — Investu - Development 2

The second development of MainForm will allow the simulation to fulfil the specific objectives for
Development 2 set out in the beginning of the section. This includes integrating the account system,
which has been started by the creating of ‘LoginForm’ and ‘SignupForm’ earlier, and adding team
capabilities, as well as connecting the database to allow for saved progress.

Imports/Namespaces— MainForm — Investu Development 2

Imports System.IO

Imports System.Xml

Imports System.Windows.Forms.DataVisualization.Charting
Imports System.Data.OleDb

The imports of this version of simulation have already been discussed in the Version 1; They include
System.lO for reading text files, system.XML for reading XML data,
System.Windows.Forms.DataVisualization.Charting for graphing stock market data, and
System.Data.OleDb for accessing the database using SQL.

Global Variables — MainForm — Investu Development 2

Public Class MainForm

Public AccessDatabaseConnection As String = "Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=; Data Source=C:\Users\Joe\Documents\visual studio 2010\Investu
Writeup\Development 2\StockInfoDB.mdb"

Public OpenPositions As New List(Of StockAttributes)
Public Symbols As New List(Of String)

Dim Seriesl As New Series
Dim LastValue As Decimal

Public AccountID As Integer
Public TeamMode As Boolean
Public TeamName As String
Public Balance As Decimal

Inside the header of version 2 of MainForm, some changes have been made in comparison to version 1.
The variables ‘Balance’, ‘Stockinfo’, ‘TimerInterval’ have all been removed, and are now integrated into
the code locally in their respective sub-routines.

The list ‘Symbols’ has been updated from a static array to a list structure. This works exactly the same
way as described in InvestuServerProgram, in which the symbols for the FTSE100 stocks are read from
a .CSV file.

Public AccountID As Integer
Public TeamMode As Boolean
Public TeamName As String
Public Balance As Decimal

INVESTU — J—H----- 132

These variables are used for holding and passing account information. The value of these variables is
passed from LoginForm and so for now it is easier to declare them globally. In the next development, this
could change to remove the need of global variables.

Public ErrorMsg As String

‘ErrorMsg’ is a variable, to which errors will be passed when they arise, and then the value of ‘ErrorMsg’
will be output at a set point, instead of having message boxes throughout the code. This allows for a more
stream lined error checking process, as all of the error messages are contained within a single variable.

INVESTU — J—H----- 133

MainForm_Load — MainForm — Investu Development 2

This sub-routine is run on loading of MainForm, which occurs after a successful login attempt by the user.

Private Sub Forml_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.lLoad

AccountID = LoginForm.AccountID
TeamMode = LoginForm.TeamMode

If TeamMode = True Then
TeamName = LoginForm.TeamName

LoginLabel.Text = "Welcome, " & LoginForm.Username & ". (" & TeamName & ")"
ElseIf TeamMode = False Then

TeamName = "0"

LoginLabel.Text = "Welcome, " & LoginForm.Username & ""
End If

Balance = Math.Round(FetchBalance(), 2)
BalanceBox.Text = "£" & Math.Round((Balance / 100), 2)

FetchOpenPositions()

CreateChart()
GraphSettings()

GraphScaleComboBox.SelectedItem = "2"

PopulateSymbolArray("C:\Users\Joe\Documents\visual studio 2010\Investu
Writeup\Development 2\StockSymbols.csv")
For L = © To Symbols.Count - 1
SelectStockComboBox.Items.Add(Symbols(L))
Next
End Sub

AccountID = LoginForm.AccountID
TeamMode = LoginForm.TeamMode

Two of the global variables declared earlier are given values. These values are taken from LoginForm.

If TeamMode = True Then
TeamName = LoginForm.TeamName

LoginLabel.Text = "Welcome, " & LoginForm.Username & ". (" & TeamName & ")"
ElseIf TeamMode = False Then

TeamName = "@"

LoginLabel.Text = "Welcome, " & LoginForm.Username & ""

End If

If the newly defined value of ‘TeamMode’ is true, then the value of ‘TeamName’ is retrieved, and a label is
updated in order to tell the user they are in team mode, by appending their team name inside brackets.

If the value of ‘TeamMode’ is false, then the user is signed into their personal accounts. ‘TeamName’ is
set to “0” and the value of the label is simply set to their username, without a team name.

INVESTU — J—H----- 134

PopulateSymbolArray— MainForm — Investu Development 2

Public Sub PopulateSymbolArray(ByVal FilePath As String)
Dim CSVData() As String
Using SR As New StreamReader(FilePath)

While Not SR.EndOfStream
CSVData = SR.ReadLine().Split(","
If String.IsNullOrEmpty(CSVData(®)) Then
MsgBox("Error loading FTSE 100")
Else
Symbols.Add(CSVData(@).Trim)
End If

End While
End Using

End Sub

This sub-routine is used to populate the ‘Symbols’ list. This is the same code as used in
‘InvestuServerProgram’ on page 106

INVESTU — J—H----- 135

Timerl_Tick — MainForm — Investu Development 2

Private Sub Timerl_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Timerl.Tick

Dim StockInfoString

Try
Timerl.Interval = 60000
StockInfoString = FetchStockDetailsString(SelectStockComboBox.SelectedItem)
NameBox.Text = SplitStockInfo(StockInfoString, "Name")
PriceBox.Text = SplitStockInfo(StockInfoString, "Price")
ChangeBox.Text = SplitStockInfo(StockInfoString, "Change")

Seriesl.Points.Clear()
Plot24hrData()
UpdatePortfolio()
GraphSettings()

VolatilityBox.Text = CalculateVolatility(PriceBox.Text, ChangeBox.Text) &
nog
Catch ex As Exception
MsgBox(ex.ToString())
End Try
End Sub

Timerl_Tick has been changed since development 1. In this development, the timer has a different
interval — 60000 milliseconds as opposed to 5000 in the earlier version. This is because the way in which
data is plotted to the graph has been changed to work with the new InvestuServerProgram. The data for
the graphs is now retrieved from the data base, instead of directly through the simulation itself, with the
data of course being supplied through the server program. The server program works by retrieving the
stock information of a new stock every second for one hundred seconds, and then once the last of the
100 symbols is reached, the process repeats, and the first symbol is queried. This effectively means that
each stock only receives new data every 100 seconds. Therefore, when the user is looking at a graph,
there is no reason to update it every 5 seconds, as it will only show a change every 20 updates, which is
a waste of processing power.

The logic behind retrieving data from the database instead of through the simulation itself, is that the

database can store hundreds of thousands of data points, whereas the program can only plot data points
that it has collected during its runtime.

INVESTU — J—H----- 136

CalculateVolatility — MainForm — Investu Development 2

Function CalculateVolatility(ByVal Price As Decimal, ByVal Change As Decimal)

Dim Volatility As Decimal
Price = Math.Abs(Price)
Change = Math.Abs(Change)

If Price <> © And Change <> © Then
Volatility = (Change / Price) * 100
Volatility = Math.Round(Volatility, 2)

Else
Volatility

End If

0

Return Volatility
End Function

Another feature provided to the user is the volatility of a stock. This is a feature outlined in the features list,
derived from the interaction with the client and user. To show the volatility of a stock, all that needs to be
done is to work out out the change in a stock as a percentage of its current price. For example, if a share
of a company starts the trading day at 100 pence, and then changes to 101, then the intra-day change is
1, which is 1% of the current price, meaning it has a 1% volatility for the day so far.

This is done by passing ‘Price’ and ‘Change’ to the function as decimals, and then validating that both the
values are greater than 0. Then, the value of ‘Volatility’ is worked out as a percentage using a simple
calculation. This value is rounded and returned.

FetchBalance — MainForm - Version 2

Function FetchBalance()
Dim CommandString As String

If TeamMode = True Then
CommandString = "SELECT Balance FROM tblTeams WHERE TeamName='" & TeamName
g "'
Else
CommandString = "SELECT Balance FROM tblUserInfo WHERE AccountID=" &
AccountID & ""
End If

Using Connection As New OleDbConnection(AccessDatabaseConnection)

Dim Command As New OleDbCommand(CommandString, Connection)
Connection.Open()
Dim reader As OleDbDataReader = Command.ExecuteReader()

While reader.Read()
Balance = reader(0)
End While

reader.Close()
End Using

Return Balance
End Function

INVESTU — J—H----- 137

CommandString = "SELECT Balance FROM tblTeams WHERE TeamName='" & TeamName &
Else
CommandString = "SELECT Balance FROM tblUserInfo WHERE AccountID=" &
AccountID & ""
End If

Now that the team system has been integrated, it is no longer possible to simply retrieve information using an
account ID. Instead, the users team mode has to be checked. If it is found to be true, then the balance value is
fetched from ‘tbITeams’, whereas if it is false, the value for the balance is fetched from the tblUserInfo table.

FetchOpenPositions — MainForm — Investu Development 2

Sub FetchOpenPositions()

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

If TeamMode = True Then
cmd.CommandText = "SELECT * FROM tblOpenPositions WHERE
tblOpenPositions.TeamName="'" & TeamName & "'"
Else
cmd.CommandText = "SELECT * FROM tblOpenPositions WHERE AccountID="" &

AccountID & "' AND TeamName='@""

End If

Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

For Each Record In SQLReply
OpenPositions.Add(New StockAttributes With {.StockSymbol =
Record.item("StockSymbol"), .StockValue = Record.item("BuyPrice"), .StockQuantity =
Record.item("StockQuantity"), .OpenPositionID =
Record.item("OpenPositionID"), .StockName = Record.item("StockName"), .BuyDate =
Record.item("TradeDate")})
UpdatePortfolio()

FetchOpenPositions is the sub-routine that allows the user to keep their trading progress. The sub-routine
fetches all of the open positions that the user has. This will occur on logging into the simulation.
Combined with the ability to save and fetch the users balance, the user will now be able to maintain
progress after logging out of their team or personal account.

If TeamMode = True Then
cmd.CommandText = "SELECT * FROM tblOpenPositions WHERE
tblOpenPositions.TeamName="" & TeamName & "'"
Else

cmd.CommandText = "SELECT * FROM tblOpenPositions WHERE AccountID='" &
AccountID & "' AND TeamName='@""
End If

The sub-routine begins with the standard connection to database code, which is followed by a conditional.
Within the conditional, the value of the command text, or SQL statement, is set. The value of the

INVESTU — J—H----- 138

command text again is dependent on the value of the boolean ‘TeamMode’. If the value is true, then the
following command text is set;

SELECT * FROM tblOpenPositions WHERE tblOpenPositions.TeamName='" & TeamName & "'

Which simply selects all information from the table ‘tblOpenPositions’ where the value of ‘TeamName’ is the
value stored in the variable ‘TeamName’ within the program.

SELECT * FROM tblOpenPositions WHERE AccountID='" & AccountID & "' AND TeamName='0'

If the value of ‘TeamMode’ is false, then the users personal trades are fetched. To find these, two values
are checked; AccountlD and TeamName. First, the value of the column ‘AccountID’ is compared with the
account ID within the simulation. However, another check needs to be made, as if only this check was
used, it would return trades made by the user not only on their personal account, but also on the team
account. Therefore we must make sure the trades that are fetched were not done on a team account. To
do this, the value of the ‘TeamName’ column is checked. When a user logs into a personal account, the
value of ‘TeamName’ is set to ‘0. This is an arbitrary value that simply denotes that the user is notin a
team. When the user makes executes a trade, this value will go into the ‘TeamName’ column in open
trades, to show that the trade was not made on a team account, but a personal account. Therefore by
also checking that ‘TeamName’ is ‘0’, it can be made certain that all of the trades fetches are those made
on the users personal account.

Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

For Each Record In SQLReply
OpenPositions.Add(New StockAttributes With {.StockSymbol =
Record.item("StockSymbol"), .StockValue = Record.item("BuyPrice"), .StockQuantity =
Record.item("StockQuantity"), .OpenPositionID = Record.item("OpenPositionID"), .StockName
= Record.item("StockName"), .BuyDate = Record.item("TradeDate")})
UpdatePortfolio()

Once the command text is set, it is executed. ‘SQLReply’ is a variable with the data type
‘OleDbDataReader’, from the System.OleDb namespace. This variable is then set to the value of
‘cmd.ExecuteReader’ which effectively executes the SQL command on the database that is currently
connected.

This returns a series of results. A For-Loop is used to iterate through the results, within which, ‘.add’ is
used on the ‘OpenPositions’ list, with the value of each of the attributes set to the corrosponding value.

e.g.
.StockSymbol = Record.item("StockSymbol™)

This sets the StockSymbol attribute of the new addition to OpenPositions equal to the value of
‘StockSymbol’ of the current item being iterated through.

After this For-Loop terminates, every open position that the user has will have been added to the list

‘OpenPositions’. From here, the open positions can be manipulated, appended, editted and displayed,
depending on what is required by the user.

INVESTU — J—H----- 139

FetchStockDetailsString — MainForm — Investu Development 2

Function FetchStockDetailsString(ByVal StockSymbol As String)

This function is the same as seen in Development 1.

SplitStockinfo — MainForm — Investu Development 2

Function SplitStockInfo(ByVal StringToSplit As String, ByVal DetailsToExtract As String)

This function is the same as seen in Development 1.

BuyButton_Click — MainForm — Investu Development 2

Handles BuyButton.Click

Private Sub BuyButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

This function is the same as seen in Development 1.

INVESTU — J—H-----

140

UpdatePortolio — MainForm — Investu Development 2

Sub UpdatePortfolio()

Dim TotalTradePrice As Decimal
Dim CurrentTotalPrice As Decimal

OpenPositionsListBox.Items.Clear()

For 1 = @ To OpenPositions.Count - 1
TotalTradePrice = Math.Round(((OpenPositions(l).Stockvalue *
OpenPositions(1l).StockQuantity) / 100), 2)

CurrentTotalPrice = Math.Round(((GetStockPrice(OpenPositions(1l).StockSymbol)
* OpenPositions(1l).StockQuantity) / 1e0), 2)
OpenPositionsListBox.Items.Add(OpenPositions(1l).StockName & " - Bought " &
OpenPositions(1l).StockQuantity & " FOR " & TotalTradePrice & " (" &
OpenPositions(1l).StockValue & " each)" & vbNewLine)
Next

End Sub

The sub-routine ‘UpdatePortfolio’ is called to populate the visual display of the simulation with the open
positions of the user. It is called on load of the simulation and upon the execution of a new trade. It first
clears the visual display that holds the open positions, and then repopulates it with the contents of
‘OpenPositions’, along with relevant, recent information regarding prices.

Dim TotalTradePrice As Decimal
Dim CurrentTotalPrice As Decimal

Two variables that will be displayed are ‘TotalTradePrice’ — the total price of the shares at the time of the
execution of the trade, and ‘CurrentTotalPrice’ which is the total price of the shares at the current time.
This gives two different numbers, the difference between which will be the total profit or loss on that
particular position.

For 1 = @ To OpenPositions.Count - 1
Next
This For-Loop loops through every open position in ‘OpenPositions’

TotalTradePrice = Math.Round(((OpenPositions(1l).Stockvalue *
OpenPositions(1l).StockQuantity) / 100), 2)

Then, the value of ‘TotalTradePrice’ is calculated for each item inside the list. This is done by fetching the
value the “StockValue’ property, of the current item in ‘OpenPositions’. This is then multiplied by the value
of the ‘StockQuantity’ property. This gives the total price of the trade in pence. This is divided by 100 and
rounded to give a value in pounds.

CurrentTotalPrice = Math.Round(((GetStockPrice(OpenPositions(1l).StockSymbol) *
OpenPositions(1l).StockQuantity) / 100), 2)

A similar process happens with ‘CurrentTotalPrice’, however this time the price is replaced by
‘GetStockPrice’ instead of the ‘StockValue’ property. This function takes a single argument: the stock
symbol of the stock being inspected. This is retrieved from OpenPositions, as it is one of the properties of
the items within the list. This function returns the current most recent price of the stock in question, which
is then multiplied by the quantity to give an updated total price.
OpenPositionsListBox.Items.Add(OpenPositions(1l).StockName & " - Bought " &
OpenPositions(1l).StockQuantity & " FOR £" & TotalTradePrice & " (" &

INVESTU — J—H----- 141

OpenPositions(1l).StockValue & " each) PROFIT=£" & CurrentTradePrice - TotalTradePrice
vbNewLine)

The item at index value ‘L’ of the list is then written to a list box called ‘OpenPositionsListBox’. An
example of the string that would be output would be as follows:

BARC.L - Bought 3450 FOR £45,600 (1,321 EACH) PROFIT=£2,346

SelectStockComboBox_SelectedindexChanged — MainForm — Investu
Development 2

Private Sub SelectStockComboBox_SelectedIndexChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles SelectStockComboBox.SelectedIndexChanged

Timerl.Interval = 1
Timerl.Start()
Seriesl.Points.Clear()
Plot24hrData()

End Sub

When the selected index of the ‘SelectedStock’ combo box is changed — e.g. the user selects a stock
symbol to inspect, this sub-routine triggers, due to its handle of
‘SelectStockComboBox.SelectedIndexChanged’. The code is similar to that in Version 1 of this sub-

routine, found in Development 1, with the addition of ‘Plot24hrData()’. This sub routine plots the data of

the last 24 hours of the stock data to the graph, read from the database.

Plot24hrData — MainForm — Investu Development 2

Public Sub Plot24hrData()

Dim Query As String = "SELECT FetchDate, StockPrice FROM tblStockPriceHistory
WHERE StockSymbol = '" & SelectStockComboBox.SelectedItem & "' ORDER BY FetchDate"

Using connection As New OleDbConnection(AccessDatabaseConnection)
Dim command As New OleDbCommand(Query, connection)

connection.Open()
Dim reader As OleDbDataReader = command.ExecuteReader()
While reader.Read()

If reader(@) >= DateTime.Today Then
PlotNewPoint((reader(@)).ToOADate(), reader(l))
LastValue = reader(1)

End If

End While
reader.Close()
End Using
End Sub

SelectStockComboBox.SelectedItem & "' ORDER BY FetchDate

INVESTU — J—H-----

142

The SQL command for this retrieval simply finds the rows in the table whose ‘StockSymbol’ value is the
same as the currently selected stock symbol (selected from the drop down box ‘SelectStockComboBox’)
and then retrieves the values of the columns ‘FetchDate’ and ‘StockPrice’ for those instances. The
information is ordered by ‘FetchDate’ to make sure that the information plotted to the graph is in
chronological order.

While reader.Read()
If reader(@) >= DateTime.Today Then
PlotNewPoint((reader(@)).ToOADate(), reader(l))
LastValue = reader(1)
End If
End While

After a standard database connection is established, and the command text set earlier is executed, a
While-Loop is initiated. This effectively loops through every row of information returned. Inside the loop is
a conditional which checks the value in reader(0) against the current time. The value in reader(0) is the
value of ‘FetchDate’. What this is essentially doing is only allowing data from the current day to be plotted
to the graph. This could be edited in further versions to be controllable by the user, however for this
development the graph will only show data for the current day of trading.

PlotNewPoint((reader(@)).ToOADate(), reader(l))
LastValue = reader(1)

Inside the conditional, the sub-routine ‘PlotNewPoint’ is called. This sub-routine takes two arguments — a
value for the X axis and a value for the Y axis, which in this case is the date and the price respectively.

Then, the value of a variable ‘LastValue’ is set to reader(0). This will be overwritten every loop, until the
final loop, meaning that the value after the loop exits will be the most recent price of the stock. Having this
value will be useful for manipulation of the graph visuals later.

PlotNewPoint — MainForm — Investu Development 2

Sub PlotNewPoint(ByVal XValue As Decimal, ByVal YValue As Decimal)
Seriesl.Points.AddXY(XValue, YValue)
End Sub

This sub-routine adds a new point to the series called ‘Series1’, using values of the arguments ‘XValue’
and ‘YValue’ as the X and Y values respectively.

GetStockPrice — MainForm — Investu Development 2

Function GetStockPrice(ByVal StockSymbol As String)

This function is taken from the development of Investu Server Program at the start of Development 2.
GetStockChange — MainForm — Investu Development 2

Function GetStockChange (ByVval StockSymbol As String)

This function is taken from the development of Investu Server Program at the start of Development 2.

INVESTU — J—H----- 143

GetStockName — MainForm — Investu Development 2

Function GetStockName(ByVal StockSymbol As String)

This function is taken from the development of Investu Server Program at the start of Development 2.

ClosePositionbutton_Click — MainForm — Investu Development 2

Private Sub ClosePositionsButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClosePositionsButton.Click

Try
Dim NewStockPrice As Decimal
Dim SelectedStock As String = OpenPositionsListBox.SelectedIndex

If OpenPositionsListBox.CheckedItems.Count = 1 Then
NewStockPrice =
GetStockPrice(OpenPositions(SelectedStock).StockSymbol)
Balance = Balance + (OpenPositions(SelectedStock).StockQuantity *
NewStockPrice)
BalanceBox.Text = "£" & Math.Round((Balance / 100), 2)

Dim CommandString As String

If TeamMode Then
CommandString = "UPDATE tblTeams SET tblTeams.Balance=" & Balance
& " WHERE tblTeams.TeamName='" & TeamName & "';"
Else
CommandString = "UPDATE tblUserInfo SET tblUserInfo.Balance=" &
Balance & " WHERE (((tblUserInfo.AccountID)=" & AccountID & "));"
End If

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then
ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = CommandString
cmd . ExecuteNonQuery ()

cmd.CommandText = "DELETE * FROM tblOpenPositions WHERE
OpenPositionID="" & OpenPositions(SelectedStock).OpenPositionID & "' "

cmd . ExecuteNonQuery ()

ConnectionDb.Close()

OpenPositions.RemoveAt(OpenPositionsListBox.SelectedIndex)
UpdatePortfolio()
Catch ex As Exception
MsgBox(ex.ToString())
End Try
End Sub

The second development of this sub-routine develops on the idea of keeping records to keep track of the
users progress.

INVESTU — J—H----- 144

If OpenPositionsListBox.CheckedItems.Count = 1 Then

Else
MsgBox("Please select the position you'd like to close.")
End If

A conditional first checks whether there is a selected position to close. If there are 0 or 2 or more selected
positions then the following code will throw an error, and so it is important that this is checked.

NewStockPrice = GetStockPrice(OpenPositions(SelectedStock).StockSymbol)
Balance = Balance + (OpenPositions(SelectedStock).StockQuantity * NewStockPrice)
BalanceBox.Text = "£" & Math.Round((Balance / 100), 2)

The following 3 lines of code work out new prices and balances. ‘NewStockPrice’ is set to the latest price
value of the current stock, retrieved using the ‘GetStockPrice’ function. Then, this value is mutliplied by
the stock quantity to work out the users new balance. Obviously, as this sub-routine represents the
execution of a sale, the value is added to the balance, not taken away like in the ‘BuyForm’ sub-routine.
Finally, the balance is formatted and displayed.

Dim CommandString As String

If TeamMode Then

CommandString = "UPDATE tblTeams SET tblTeams.Balance=" & Balance & " WHERE
tblTeams.TeamName="'" & TeamName & "';"
Else

CommandString = "UPDATE tblUserInfo SET tblUserInfo.Balance=" & Balance & " WHERE
(((tblUserInfo.AccountID)=" & AccountID & "));"
End If

Similarly to other sub-routines, ClosePositionsButton_Click now incorporates a conditional to check the
value of ‘TeamMode’, and uses different SQL command texts depending on the value. If the player is in
team mode, then the following SQL is used:

UPDATE tblTeams SET tblTeams.Balance=" & Balance & " WHERE tblTeams.TeamName='" &
TeamName & "';

This command updates the balance of the team, by making use of the ‘UPDATE’ command in SQL. The
‘Balance’ column in ‘tbITeams’ is set to the value of ‘balance’ which was just changed in the previous few
lines of code. This change occurs where there is a match between the column value of ‘TeamName’ and
the ‘TeamName’ that is stored in the variable of the same name inside the simulation.

If the player is not in team mode, then alternative SQL is used:

UPDATE tblUserInfo SET tblUserInfo.Balance=" & Balance & " WHERE
(((tbluserInfo.AccountID)=" & AccountID & "));

This performs the same task, however uses updating the table ‘tblUserInfo’ instead of ‘tbITeams’. The
balance is set where the exists a match between the column ‘AccountID’ and the variable ‘AccountID’
within the simulation.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)

INVESTU — J—H----- 145

If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()
Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = CommandString
cmd. ExecuteNonQuery ()

After the value of ‘CommandString’ is determined, the connection to the database is opened with the
standard connection procedure discussed in earlier sections. The command text is set to
‘CommandString’ and the NonQuery is executed. The balance has now been updated to reflect the
changes caused by the execution of the trade.

cmd.CommandText = "DELETE * FROM tblOpenPositions WHERE OpenPositionID='" &
OpenPositions(SelectedStock).OpenPositionID & "' "
cmd . ExecuteNonQuery ()

ConnectionDb.Close()

Before the connection to the database is closed, another SQL command is executed. This one simple
deletes any trace of that position from the database, in order to keep the information in the table correct.
This is done with a ‘DELETE * SQL command, acting on the ‘OpenPositions’ table, where the ID’s of the
positions match.

OpenPositions.RemoveAt(OpenPositionsListBox.SelectedIndex)

The final two lines of code in this sub-routine are used for updating the visual display. Because of the fact
that the items in the list box are written using the items in the OpenPositions list, the index values of both
the list and box match. For example, OpenPositions(5) is the same item as is stored in
OpenPositionsListBox(5). Therefore, by removing knowing the index value of an item in the list box, the
index value of that item in the OpenPositions list is automatically known. This line uses the *.RemoveAt’
feature of lists which removes an item at a given index, the given index in this case being the index value
of the currently selected item in the list box.

UpdatePortfolio()

Now that an item has been removed from the ‘OpenPositions’ list, the index values of the box and the list
no longer match up. To rectify this, ‘UpdatePortfolio’ is called, which clears the box and rewrites the
contents from the ‘OpenPositions’ list.

INVESTU — J—H----- 146

LogoutButton_Click — MainForm — Investu Development 2

Private Sub LogoutButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles LogoutButton.Click

LoginForm.Show()
Me.Close()

End Sub

This sub routine simply allows the user to log out of their account. This is done by first showing the login
form, and then closing the main form, with ‘me.close()’

GraphScaleComboBox_SelectedIndexChanged — MainForm — Investu
Development 2

Private Sub GraphScaleComboBox_SelectedIndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles GraphScaleComboBox.SelectedIndexChanged
Timerl.Interval =1

End Sub

To make the user experience smoother, this sub-routine is called when the user selects a new stock
symbol from the drop down menu, and sets the timer interval to 1 millisecond. This effectively forces a
timer tick, causing the visual display to instantly update with information about the selected stock — this
stops the using having to wait for the timer to tick naturally, which could take up to 5 seconds.

OpenPositionsListBox_ltemCheck — MainForm — Investu Development 2

Private Sub OpenPositionsListBox_ItemCheck(ByVal sender As Object, ByVal e As
System.Windows.Forms.ItemCheckEventArgs) Handles OpenPositionsListBox.ItemCheck

If e.NewValue = CheckState.Checked Then

For i As Integer = @ To Me.OpenPositionsListBox.Items.Count - 1 Step 1
If i <> e.Index Then Me.OpenPositionsListBox.SetItemChecked(i, False)
Next
End If
End Sub

This routine is reused from Development 1. It ensures only one box can be checked at a time in
‘OpenPositionsListBox’. This will help to mitigate errors caused by users executing multiple trades at once.

INVESTU — J—H----- 147

CreateChart() — MainForm — Investu Development 2

Sub CreateChart()

Seriesl.Name = SelectStockComboBox.SelectedItem
Seriesl.ChartType = SeriesChartType.Line
Seriesl.BorderWidth = 4
Chartl.Series.Add(Seriesl)
Chartl.Legends.Clear()

Seriesl.XValueType = ChartValueType.DateTime
Seriesl.BorderWidth = 2

End Sub

This sub-routine is taken from Development 1.

GraphSettings()_SelectedindexChanged — MainForm — Investu Development 2

Sub GraphSettings()

Chartl.ChartAreas(0).AxisY.Minimum
Chartl.ChartAreas(@).AxisY.Maximum
Chartl.Update()

LastValue - Val(GraphScaleComboBox.Text)
LastValue + Val(GraphScaleComboBox.Text)

End Sub

These two sub-routines are reused from Development 1, and are responsible for creating and formatting
the graph when it is initialised upon loading into the simulation.

INVESTU — J—H----- 148

Testing 1 - Investu Server Program — Development 2

(The FTSE100 trading hours are between 9:00am and 16:29pm, so the server program would normally
only collect data between those times. For these tests, that time restrcition has been removed.)

Every sub-routine has been tested individually to ensure it works independently, however these tests
have not been shown. The tests displayed are tests that show multiple sub-routines and functions
working together to produce the desired outcome.

INVESTU — J—H----- 149

Show that stock
information for
each stock
symbol in the
StockSymbols.cs
v file is queried
and the
information is
displayed

o5 Server

Latest Price Fetches

AAL.L 1747.6

ABF.L 25E4

ADM.L 2883

ADN.L 316.33

AGK.L 728.6

AMEC.L 2

ANTO.L 977.4

ARM.L e

ASHM.L 414

AL 527.2

AIN.L 4889.5 -25.5
BA.L 618 12.8
BARC.L 215.4 -8.85
BATS.L 3722.5 -32
BG.L e 2
BLND.L EE3 -1
BLT.L 1558 21.4
BNZL.L 28EG 11
BP.L £32.78 11.1E
BRBY.L 1768 22
B5Y.L e e
BT-A.L 248.8 -3

Stop

RUNNING

[] Show Emor
Display data

WioEa sd o e L0 R3S @

Above is the result of loading the program, clicking the ‘Start’ button, and waiting
around 20 seconds. The program has looped just over 20 times, indicating that the
idea of checking a new symbol every second is working correctly.

INVESTU — J—H-----

150

ot Server

Start

STOPFPED

[] Show Emor
Dizplay data

The program continues to fetch the data, incrementing through the symbols, all
the way to the end of the list.

This indicates that the requirements set out in the test description have been met

Latest Price Fetches

ES
BE&
E7
BB
B9
e
71
72
73
74
75
76
77
7B
74
B2
21
g2
B3
B4
85
BB
87
BB

PSON. L
RE.L

RBS.L
RDSB.L
REL.L
REX.L
RIC.L
RR.L

RRS.L
R3A.LL
RSL.L
S5AB.L
SBRY.L
SDR.L
SDRC.L
SGE.L
SHF.L
sL.L

SMIN.L
SN.L

SRP.L
55E.L
S5TAN.L
SVT.L

JBG.E
5443
275.6
2687.5
1551.14
2
3974.5
BG3
L5748
653

2

a

and the test has therefore been passed.

INVESTU — J—H-----

151

Show that the
when every
symbol has been
queried, the loop
resets, and the
first symbol is
gueried again

o5 Server

Start

STOPPED

[] Show Emor
Display data

Latest Price Fetches

72 RR.L
73 RRS.L
74 RSA.L
75 R5L.L
76 SAB.L
77 SBRY.L
78 SDR.L
75 SDRC.L
28 S5GE.L
21 SHP.L
g2 S5L.L
83 SMIN.L
24 SH.L
25 SRP.L
1) 35E.L
27 S5TAN.L
28 SVT.L
24 TATE.L
=] TLW.L
91 T5CO.L
g2 ULVR.L
93 . L
o4 VED.L
85 VOD. L

2

e
266.1
3263
2348
B32.4
4824.76
2
1685.5
1377.5
95.65
1328
7659.2
1868
E5G9.B
238.7
238.4
3928
7@5.4
746
212.4

e

e
-8.6
-12
-5
1.8
224.76
e
-11.5
-11.5
-2.38
2.5
4.5

8
-2.6
5.3
-1.4
54
5.6
7.2

The program nears the end of the list of symbols.

INVESTU — J—H-----

152

ot Server

St Latest Price Fetches

STOPFED

e AAL.L

[] Show Emor
Display data

The program then resets back to the first symbol, and begins looping through
again. This indicates that the requirements set out in the test description have
been met and the test has therefore been passed.

Show that this
data is written to
the database

== T

1D » StockSymbc - | StockPrice - FetchDate -
132758 AALL 1747.6 24/04/2018 19:22:32
132759 ABF.L 2584 24/04/2018 19:22:33
132760 ADM.L 2003 24/04/2018 19:22:34
132761 ADN.L 316.33 24/04/2018 19:22:35
132762 AGE.L 729.6 24/04/2018 19:22:36
132763 AMEC.L 0 24/04/2018 19:22:37
* {N wrl
o5l Server — O e
o Latest Price Fetches
2 AAL.L 1747.6 -28
1 ABF.L 2584 -23
2 ADM. L 2883 5
3 ADN. L 316.33]
STOPFED 4 AGK. L 729.6 14
5 AMEC.L @ 2
[] Show Emor
Display data

INVESTU — J—H-----

153

This indicates that the requirements set out in the test description have been met
and the test has therefore been passed.

Show that data For the test, the server program will be left running from before 9:00am, until a few
starts being minutes after 9:00am.

collected when
the FTSE100
opens for trading.

The table is currently empty as shown below:

| 7] tbiStockPriceHistory
1D - |StockSymbe - | StockPrice - FetchDate - FetchTime ~ | Click to Add -
(New)

And the server program is started at 8:06am:

a5/

Latest Price Fetches

Stop

RUNNING

[] Show Emor
Display data 08:06

Wednesday
25/04/2018

INVESTU — J—H----- 154

1D
132764
122765
132766
132767
132768
122769
132770
132771
132772
132773
132774
132775
132776
132777

132773

After leaving the program for a while, data begins to enter the database. Notice
that the ‘FetchDate’ value for the first entry is ‘09:00:00’, and no data before,

§iz tusmpnicelﬂmf‘l\:j tbiCrash | [tblUserinfo | - tbiAlerts |] tbil

~ | StockSymbc ~ | StockPrice

TATE.L
TLW.L
TSCO.L
ULVR.L
uu.L
VED.L
VOD.L
WEIR.L
WOSs.L
WPP.L
WTE.L
AALL
ABF.L
ADM.L
ADM.L

559.8
225.9
238.9
3542
710.52
735.56
211.9
2202

0

1123
4157
1712.8
2576
1998
316.33

-

FetchDate
25/04,/2018 09:00:00
25/04/2018 09:00:04
25/04/2018 09:00:05
25/04/2018 09:00:06
25/04/2018 09:00:07
25/04/2018 09:00:08
25/04,/2018 09:00:09
25/04/2018 09:00:10
25/04/2018 09:00:11
25/04/2018 09:00:13
25/04/2018 09:00:13
25/04/2018 09:00:14
25/04/2018 09:00:15
25/04/2018 09:00:16
25/04/2018 09:00:17

despite the fact the program was started at 08:06:00am.

Show that the
program collects
the correct
amount of data

133624
133625
133626
133627
133628
123629
133630
1336321
133632
123633
133655

After 15 minutes of collecting data, the above image shows the final entries into

ITV.L
JIMAT.L
KAZ.L
KGF.L
LAND.L
LGEM.L
LLOY.L
MGGT.L
MEKS.L
MREW.L
SGE.L

143.9
3231
896.73
302
973.45
278
65.78
458.2
279.9
234.4
628.6

25/04/2018 09:14:49
25/04/2018 09:14:51
25/04/2018 09:14:51
25/04/2018 09:14:52
25/04/2018 09:14:53
25/04/2018 09:14:55
25/04/2018 09:14:56
25/04/2018 09:14:58
25/04/2018 09:14:58
25/04/2018 09:14:59
25/04/2018 09:15:00)

the database before 15 minutes has been elapsed.

INVESTU — J—H----

155

Record: M 4 900 of 1103)

After 15:00 minutes, there are 900 entries.

One entry is made into the database per second. 15 minutes is equivalent to 900
seconds. Therefore, there are the correct number of entries in the database.

This indicates that the requirements set out in the test description have been met
and the test has therefore been passed.

INVESTU — J—H----- 156

Show that data
for the current
day is plotted to
the graph in the
simulation

StockPrice ~

1D ~ | StockSymbc - FetchTime FetchDate

132655 EMG.L 181.71 09:03:27 30/04/2018 09:03:27
o 132656 EMRC.L (1] 09:03:28 30/04/2018 09:03:28
132657 EVR.L 454.3 09:03:29 30/04/2018 09:03:29
 |132658 EXPN.L 1673.5 09:03:30 30/04/2018 09:03:30
132659 FRES.L 1286 09:03:31 30/04/2018 09:03:31
o 132660 GFS.L 261.8 09:03:45 30/04/2018 09:03:45
- 132661 GKM.L 464.95 09:03:46 30/04/2018 09:03:46
132662 GLEN.L 358.15 09:03:47 30/04/2018 09:03:47
132663 GSK.L 1464.4 09:03:47 30/04/2018 09:03:47
o 132664 HL.L 1734 09:03:48 30/04/2018 09:03:48
132665 HMSO.L 549.4 09:03:49 30/04/2018 09:03:49
_ |132666 HSBA.L 727.8 09:03:55 30/04/2018 09:03:55
132667 IAG.L 631.8 09:03:56 30/04/2018 09:03:56
o 132668 1AP.L 1] 09:03:56 30/04/2018 09:03:56
132669 IHG.L 4603.75 09:03:57 30/04/2018 09:03:57
~ |132670 IMI.L 1101.34 09:03:59 30/04/2018 09:03:59
_ |132671 IMT.L 0 09:04:00 30/04/2018 09:04:00
o 132672 IPR.L a17.7 09:04:01 30/04/2018 09:04:01
132673 ITRK.L 4940 09:04:02 30/04/2018 09:04:02
132674 ITV.L 149.75 09:04:03 30/04/2018 09:04:03
132675 IMAT.L 3309 09:04:04 30/04/2018 09:04:04
_ |132676 KAZ.L 921.2 09:04:05 30/04/2018 09:04:05
132677 KGF.L 305.2 09:04:06 30/04/2018 09:04:06
~ |132678 LAND.L 994.95 09:04:07 30/04/2018 09:04:07
132679 LGEN.L 271.5 09:04:08 30/04/2018 09:04:08
. |132680 LLOY.L 65.03 09:04:09 30/04/2018 09:04:09
- |132681 MGGT.L 477.6 09:04:10 30/04/2018 09:04:10
_ |132682 MEKS.L 284.9 09:04:11 30/04/2018 09:04:11
132683 MRW.L 238.1 09:04:12 30/04/2018 09:04:12
132684 NG.L 844.6 09:04:13 30/04/2018 09:04:13
132685 NXT.L 5272 09:04:14 30/04/2018 09:04:14
_ |132686 OML.L 257.8 09:04:15 30/04/2018 09:04:15
132687 PFC.L 610.2 09:04:16 30/04/2018 09:04:16
_ |132688 POLY.L 731.8 09:04:17 30/04/2018 09:04:17
~ |132689 PRU.L 1885.5 09:04:18 30/04/2018 09:04:18
_ |132650 PSOM.L 831.2 09:04:19 30/04/2018 09:04:19
_ |132691 RB.L 5683 09:04:20 30/04/2018 09:04:20
132692 RBS.L 270.26 09:04:21 30/04/2018 09:04:21
132693 RDSE.L 2590 09:04:22 30/04/2018 09:04:22
132654 REL.L 1565.5 09:04:23 30/04/2018 09:04:23
_ 132695 REX.L 0 09:04:24 30/04/2018 09:04:24
_ 132696 RIO.L 3956 09:04:25 30/04/2018 09:04:25

132697 RRE.L 840.8 09:04:25 30/04/2018 09:04:25
Record: M 10f4587 | » M e | K No Filter | Search

The server program was left to run for a while. Notice the ‘4587’ at the bottom —
this shows how many entries are in the database (around an hours worth of data)

Now, when the main simulation is loaded, the user is able to see graphs:

INVESTU — J—H-----

157

a! Prototype 7

& @ Welcome, Bert | Sign Out

|ANTO L v
Company Name Curment Balance:
|ANTOFAGASTA | |£100000
Price Volatility Price Mlers
X [os] |
Change Create Mlert
[10.4 || |
BUY
Infa Close Position

871

967.4

963.8

960.2

956.6

953

— O
24br History ~ Market News World News Trade History FTSE 100 Details Alerts
\J \-.‘|\l|
3070472013 300042018 3070472013 3000472018 30/04/2018
30/0452018 3000452018 30/0472018 30/04/2018

5]
4

158

INVESTU — J—H-----

L 1]

oS Prototype 7

_.I..M @ | Welcome, Bert | Sign Out

[BATS.L |

Company Name

Current Balance:

|BRIT AMER TOBACCO _ [£100000
Price Wolatility Price Alerts
|4044.14 T _
Change Create Mlert
1364 || _
BUY
Info Close Position

24hr History Market News

41015

4081.5

4061.5

40415

4021.5

4001.5

— O
Word News Trade History FTSE 100 Details Alerts
\\I \\L.\l'l\
VA =
P— \/\l\
— S
30/04/2018 30/0452018 30/04/2018 30/04/2018 30/04/2018
30/04/2018 30/04/2018 3000472018 300452018

The previous two screenshots show the graphs for Antofagasta and Brit Amer

Tobacco.

159

INVESTU — J—H-----

Below are screenshots showing the graph feature working for various other

stocks.

! Prototype 7

(5 @ | Welcome, Bert | Sign Out

24hr History Market News World News Trade History FTSE 100 Details Alerts

PFCL v 613.4
Company Name: Curent Balance
[PETROFAC] [£100000
Price Volatility Price Alets 6114
5 I |
Change Create Alett
1 N
609.4
BUY f
607.4 _ ‘\/ "
605.4
603.4
30/04/2018 30/04/2018 3010412018 30/04/2018
30/04/2018 30/04/2018 8
Info Close Pastian
- o X

85l Prototype 7

5 @ |Welcome, Bert | Sign Out

24nr History Market News World News Trade History FTSE 100 Detals Alerts

o Prototype 7

(25 @ | Welcome, Bert | Sign Out

LAND.L ~

Company Name

Cument Balance:

[LaND SEC RELT. | [£100000 |
Price Volatity Price Aerts
8961 | [p97%
Change Create Alett
1
BUY
Info Close Pastion

2dhrHistory | Market News World News Trade History FTSE 100 Details Alerts

997.

BT-AL ~ 2528
Company Name Cunertt Balane
[BTGROUP | [£100000 |
Price Volatiiy Price Aletts 2622
[5185 [] [|
Change Create Alet
L | 2515
/N M
251
2504
-
2498
30/0412018 3000412018 3010412018
30/0472018 8
Info Close Position
- 0 x

9955

993.1

990.7 L/
988.3 a

985.9
30/0412018
30/0-

30/04/2018
18

INVESTU — J—H

160

24hr History Market Mews World News Trade History FTSE 100 Details = Mlerts

1560.2

1554.6

1549

15434 _//\1.__/\/_ _ﬁ\’\/\/ \/
~

1537.8 \/
o

30/04/2018 30/04/2018 30/04/2018 3000472018 3000472018
30004/2018 30M4/2018 30M4/2018 30/0402018

1532.2

EEV

Note that the scale box (A feature tested in Development 1) is different for each
screenshot — this is necessary to fit the graph on the the page (otherwise it would
be too zoomed in or too zoomed out)

This is demonstrated below, where the same stock as above is shown, but with a
smaller scale:

24hr History Market News World News Trade History FTSE 100 Details Mlerts

1551.2

1549.2

1547.2

1545 2 /\ A iy /

1543.2 LJ

1541.2 N

3000472018 3000472018 30/04/2018 3000472018 30/0472018
300042018 30/04/2018 300042018 300042018

Despite being the same graph, the different scale means the second screenshot
is so zoomed in that half the data is off the graph. That is the reason why the scale
box is different for every screenshot.

INVESTU — J—H-----

161

INVESTU — J—H----- 162

Testing 1 — Investu Simulation — Development 2

Every sub-routine has been tested individually to ensure it works independently, however these tests
have not been shown. The tests displayed are tests that show multiple sub-routines and functions
working together to produce the desired outcome.

SignUpForm Testing 1

Show that sign up
attempt will be
accepted and an
account will be
written to the
database, when
tried with
standard inputs

Above is a screenshot of the table ‘tblUserInfo’ in the database, to show that
no accounts currently exist

B Sign Up — O p4

Investu SIGN UP

Welcome to Investu! Please Usemame
erter your details to sign up. |J°E |

Password
| Password 1 |

Email
|iue@1ntmail.mm |

We know that the regular expressions used require passwords to consist of 8
or more characters, with one upper case character and one number.
Therefore the password ‘Password1’ would be a valid password.

INVESTU — J—H-----

163

B Sign Up — O =

Investu SIGN UP

Welcome to Investul Please Usemame
enter your details to sign up. |J,:,E
prototyped >

Your account has been created! Click login to proceed.

Create Account

After pressing the ‘Create Account’ button, a confirmation message appears
to confirm that the account creation was successful. The account should now
appear in the database in the table ‘tblUserInfo’

AccountlD -~ | Username ~ | Passwrd - | Balance - Admin - Email -
1 loe Passwordl 10000000 O joe@hotmail.com
* (New) 0 O

And here we see that the account has successfully been written into the
database. This indicates that the requirements set out in the test description
have been met and the test has therefore been passed.

INVESTU — J—H-----

164

Show sign up is
rejected when
password does
not meet the
parameters of the
regular
expressions

SIGN UP

Welcome to Investu! Please Usemame
enter your details to sign up. |J,:,E

Password

|passwu:un:|1

prototyped

Invalid Password - Passwords must have at least 1 upper case character,
1 number and & total characters.

This password is 9 characters with a number, but does not contain any
uppercase characters.

SIGN UP

Welcome to Investu! Flease Usemame
enter your details to sign up. |J,:,E

Password

| Password

prototyped

Invalid Password - Passwords must have at least 1 upper case character,
1 number and & total characters.

INVESTU — J—H----

165

This password does not contain a number, but has 8 characters and an
uppercase letter

SIGN UP

Welcome to Investu! Please Usemame
enter your details to sign up. |J.:,E,

Password
|P1

prototyped

Invalid Password - Passwords must have at least 1 upper case character,
1 number and 8 total characters.

This password contains an uppercase letter and a number, but does not
have 8 characters.

INVESTU — J—H----- 166

g Sign Up

SIGN UP

Welcome to Investu! Please Usemame
enter your details to sign up. |J,:,,33

Password
| """ AasdasdAB4™1 234" ")

Email

Create Account

Although the first three password tests were successful, a problem arises
when this string of random letters and characters is entered.

®

ConnectionDb.Close() Exception Unhandled

in query expressio

ProceedToSignUp()

Lo Exception Settings

This is due to the fact the input contains apostrophes and brackets, which
effectively alter the SQL statement. The regular expressions will need to be
changed so that the user is not able to change the SQL, else the simulation
will be vulnerable to SQL injections, allowing users to change information
within the database.

INVESTU — J—H-----

167

Show that
accounts can only
be created if they
have a unique
username

pase Tools Frelds Table

SIGN UP

e |
Joe

Password

| Password 1| |

Attempting to sign up with the username ‘Joe’ while there is already an
account in the database with the same name, produces this error:

g5 Sign Up — O *

Investu SIGN UP

Welcome to Investu! Please Usemame
enter your details to sign up. |Jne |
Password
|Fasswurd1 |
prototyped *

The username you have entered is already taken.

m

This indicates that the requirements set out in the test description have been
met and the test has therefore been passed.

INVESTU — J—H-----

168

validation for
blank entries in

required fields Investu SIGN UP

works correctly Welcome to Investu! Please Usemame
enter your details to sign up. | |

Password
| Password 1 |

prototyped >

The Username and Password are required fields.

g5 Sign Up — O *

Investu SIGN UP

Welcome to Investu! Please Usemame
enter your details to sign up. |Jne-i |
Password
prototyped >

Invalid Passwoard - Passwords must have at least 1 upper case character,
1 number and & total characters,

I

This indicates that the requirements set out in the test description have been
met and the test has therefore been passed.

INVESTU — J—H----- 169

LoginForm Testing 1

Show that
accounts that
exist in the
database can be
signed, resulting
in the loading of
the main form
with the users
information

From the testing of ‘SignUpForm’ we know that there exists an account in the
database with the username ‘Joe’ and password ‘Password1’.

B2 Investu Login >

Investu

A real-time stock market simulator for students.

Lser name

|Ju& | Havent got an
account ? Sign Up

Password

— |

] Team Mode Sign Up

[togn]| Cancel|

Attempting to sign in with this information gives the following result:

oLl Investu Development 2

= | Welcome, Joe | Sign Out I 24hr History

Select Stock Symbol - |

Cumrent Balance:
| [£100000

The simulation loads, with the username displayed, and the correct balance

INVESTU — J—H-----

170

in the ‘Current balance’ display box.

This indicates that the requirements set out in the test description have been
met and the test has therefore been passed.

Show that correct
username
incorrect
password
combination
results in a failed
login attempt

g5 Investu Login

Investu

A real-time stock market simulator for students.

User name

|Joe Havent got an
accourt? Sign Up

Pazsword
—
] Team Mode

[logn | cancel |

The password attempted here is ‘Password2’, whereas the correct password
for the account name with ‘Joe’ is ‘Password1’.

INVESTU — J—H-----

171

BB Investu Login =

Investu

A real-time stock market simulator for students.

Username | Prototyped X

Joe an
Invalid Username or Passwaord, Up

Passwaord

0 e

Logn | | Cancel

This produces this dialogue box.

A similar result is produced when the user tries to sign into an account with a
username that does not exist in the database:

INVESTU — J—H----- 172

g5 Investu Login *
A real-time stock market simulator for students.
Iser name
|Jue1324 | Havent got an
accourt ? Sign Up
Passwaord
[] Team Maode Sign Up
| logn | |Cancel |
B Investu Login >

A real-tim prototyped v tudents.

|ser name

Joe1324 Invalid Username or Passward, —

n Up
Passwaord
[] Team Mo

[togn | |cCancel |

INVESTU — J—H-----

173

Show that users
who are not in a
team cannot log
into their account
in team mode

g5 Investu Login *

Investu

A real-time stock market simulator for students.

Llzer name

|Jue | Havent got an
accourt ? Sign Up

Passwaord

Ty |

Sign Up

To load the simulation in team mode, the ‘Team Mode’ check box is checked.

BE Investu Login =

lnvestu

prototyped >

You don't have a team! You will be loaded into single user mode.

A Team Mode Sign Up

Because the user is not in a team, they are prompted with a dialogue box.

INVESTU — J—H-----

174

85! Investu Development 2

ﬁ '@ |Welcome,Joe | Sign Out |

2Zdhr History
EiE|E=l::1 Stock Symbal v|
Company Name Current Balance:
| | [£100000 |
Prira VWrlatilitu

The user is then signed into their personal account.

This indicates that the requirements set out in the test description have been
met and the test has therefore been passed.

Show that a The ability to log into an admin account exists in Development 2, however the
designated admin | functionality has not been added yet, as that will come later in the

account will be development. Therefore, it is expected that the admin login will result in the
signed into admin | loading of a blank form.

mode.

To create an admin, we will manually change the value of ‘Admin’ in the

database.
Sort & Filter | Records | Find T
T T, | =
5 tbiTe: \E \E—ﬁﬂ" |
| AccountlD v| Username v| Passwrd v|
N 46 Joe Passwordl
* (New)

Then, by loading signing into the account with the name ‘Joe’, the following is
displayed.

INVESTU — J—H----- 175

85 AdminView - O X

In future developments this form can be developmed to act as an admin
display page, with functionality allowing for the creation, manipulation and
analysis of teams.

This indicates that the requirements set out in the test description have been
met and the test has therefore been passed.

Show that users
can sign into
team accounts

Because the ability for teams to be created and users to join teams does not
exist yet, we will manually edit the database to test this functionality.

We will add this user to a team:

7] tbiTeams | = tbiUserinfo
AccountlD - | Usermame - Passwrd - Balance - Admin -
+ 46 loe Passwordl 10000000 |
* (New) 0 O

First, a team is created — notice the balance of ‘12345’, as opposed to the
balance of the account ‘Joe’, which is 1000000.

INVESTU — J—H-----

176

Next, the user ‘Joe’ is added to the team by creating a new entry in
‘tblITeamUsers’

This is a link table, linking the team to the user.

Now that the user is in a team, the user should be able to log into their team
account.

...............................

INVESTU — J—H-----

177

This produces the following display:

8! Investu Development 2

‘& @ | Welcome, Joe. (TestTeam) | Sign Out | 24 History
EiE|Eu::t Stock Symbol vl
Company Name Cument Balance:
| | |[p12345

This time, the user’'s team name is displayed along side their name, as well
as the team balance — notice the balance is taken from ‘tbITeams’ instead of
‘tblUserInfo’, as this is the team account.

This indicates that the requirements set out in the test description have been
met and the test has therefore been passed.

Show that users
of the same team
can log into the
same team
account

|AocountID -~ Username - Passwrd -~ Balance - Admin -

48 Joe Passwordl 10000000]
48 Toe Password2 10000000 U
* (New) | 0 L]

Two users have been created, ‘Joe’ and ‘Toe’.

They will be added to the following team:

TeamlD - |TeamMame - | Balance - TeamCode -~ |Cf

N 23 TestTeam 12345 TEST1
* | (New) 0

The ID’s for the team and users are added to the link table to associate the

INVESTU — J—H-----

178

accounts with the team:

T tbiTeams 1j tbiTeamUsers | | tbiUserinfo .

TeamUsersl - | AccountlD - | TeamlID ~ Click

14 46 23
15 45 23
* (Mew)

When signing into the account with the account named ‘Joe’, the following
dialogue appears:

a5 Investu Development 2

L_? & Welcome, Joe. (TestTeam) | Sign Out Phr
[Select Stock Symbol v |
Company Mame Cument Balance:
| | |[£12345
Price Wolatility

When signing into the account named ‘Toe’ with team mode set to true, the
following dialogue appears:

ot |rvestuy Development 2

L_? & Welcome, Toe, (TestTeam) | Sign Cut 24hr History
QElect Stock Symbol v |
Comparny Mame Cument Balance:
| | [m12345
Price Wolatility

[[[
Notice that both accounts are have ‘(TeamTest)’ — the name of their team,
after their name. Furthermore, the balance value for both accounts reflects
that of the team.

| believe this is sufficient evidence to conclude that the requirements set out
in the test description have been met and the test has therefore been passed.

INVESTU — J—H-----

179

MainForm Testing 1

Prove that a user
can sign in to
their account, Initially, the balance of the account ‘Joe’ is £100,000 and the portfolio box is
execute a trade, empty:

and then log out,

and their
progress will be o Investu Development 2
saved ﬁ Iﬁl |Welcume, loe | Sign Out I

Select Stock Symbol V|

Currert Balance:
| [£100000

Price Wolatility

| | |

Change

| | |

BLUY
| Close Position |

Then, a trade is executed on the account:

INVESTU — J—H----- 180

o Investu Development 2
= | Welcome, Joe | Sign Out |

|ANTD.L v|

Company Name Cument Balance:
|ANTOFAGASTA | [£93221 96

Price Volatility
1956 (033 |

Change
32 | |

BUY

[] ANTOFAGASTA - Bought 705 FOR 6778.04 (356 each)

Close Position

Now, the simulation is closed

In the database, we can see that a position has been opened, with the
account ID 46, meaning that this trade was made by the account ‘Joe’.

OpenPositionlD - | AccountlD - StockSymbc - StockName - StockQuanti - BuyPrice -

This means that the trade has been successfully written into the database.

Upon loading the simulation again with the same account, the following is
displayed:

INVESTU — J—H----- 181

a5 Investu Development 2

L_:": & | Welcome, Joe | Sign Out

qelect Stock Symbol v |
Company Name Cument Balance:
| | |gs322196
Price Wolatility
| | |
Change
| | |
BUY

[] ANTOFAGASTA - Bought 709 FOR £778.04 (356 each)

Close Position

This indicates that the requirements set out in the test description have been
met and the test has therefore been passed.

Prove that a user | As shown in a previous test, the account ‘Joe’ has been made a member of
can log into a the team ‘TestTeam’. Signing into this account shows the following display:
team account,
execute a trade,
and then log out,
and their
progress will be
saved on their
team account

INVESTU — J—H---- 182

g Investu Development 2
E .@ |Welcume, Joe. (TestTeam) | Sign Cut |
EIE|E|::t Stock Symbal v|
Company Mame Current Balance:
| | |£123.45
Price Volatility
| | |
Change
| || |
BUY
| Close Position |

After executing a trade, the following display is shown:

INVESTU — J—H----- 183

8 Investu Development 2

ﬁ .@ |Welcume,]ue. (TestTeam) | Sign Out |

|E|LND.L v|

Cumrent Balance:
|£83561

Company Name
|BRIT LAND CO REIT

Price Volatility
664 JCES

Change
-2

BLY

[] BRIT LAMD CO REIT - Bought & FOR 33.84 (664 each)

The simulation is now closed. The database shows as follows:

OpenPositionlD » | AccountlD - StockSymbc - | StockMame - | StockQua

4523/04/20s18 46 BLND.L BRIT LAND CO 6
19-15N% RFIT
*

Upon reloading the account ‘Joe’ in team mode, the following display is
shown:

INVESTU — J—H-----

184

o5 Investu Development 2

L_? & | Welcome, Joe, (TestTeam) | Sign Out
[Select Stock Symbol v|
Company Mame Cument Balance:
| | [es3s1
Price Volatility
| | |
Change
| I |
BUY

] BRIT LAND CO REIT - Bought & FOR 35.84 (664 each)

Close Position

This indicates that the requirements set out in the test description have been
met and the test has therefore been passed.

Show that
members of the
same team can
both open and
close positions,
and the changes
will be visible to

The two accounts used for this test will be ‘Joe’ and ‘Toe’, which were added
to the team ‘TestTeam’ in a previous test. ‘Joe’ is loaded into team mode and
two trades are executed:

INVESTU — J—H-----

185

other users who
are logged into
the team account

o' Investu Development 2

ﬁ .@ |Welcome, Joe. (TestTeam) | Sign Cut |

|L.AND.L v|

Company MName Cument Balance:
|LAND SEC RELLT. | |£s6.96

Price Volatility
|968.1 ||038% |

Change
37 | |

BUY

[] KINGFISHER - Bought 12 FOR 37.13 (309.4 each)
[] LAND SEC R.EL.T. - Bought 2 FOR 15.36 (368.1 each)

| Cloge Position |

Then, the simulation is closed and then reloaded. The account ‘Toe’ is signed
into, with team mode set to true:

INVESTU — J—H-----

186

o Investu Development 2

E I@ |Welcume, Toe. (TestTeamn) | Sign Out |

EiE|El::t Stock Symbal vl

Company Name Cument Balance:
| |£66.96

Price
|

Change

BUY

[] KINGFISHER - Bought 12 FOR 37.13 (309.4 each)
[] LAND SEC R.EL.T. - Bought 2 FOR 15.36 (368.1 each)

The positions are then both closed by the account ‘Toe’:

INVESTU — J—H----- 187

ot |rvestu Development 2

ﬁ '@ |Welcume_ Toe, (TestTeam) | Sign Out |

|Selec:t Stock Symbol ~ |

Compary Name Cument Balance:
[£123.45

Notice that the balance returns to £123.45, the same as before ‘Joe’
executed the two trades.

This indicates that the requirements set out in the test description have been
met and the test has therefore been passed.

INVESTU — J—H----- 188

Testing Findings - Investu Development 2

From the tests carried out on Development 2 we can see that the code runs largely as expected — the
goals determined at the start have been met, and the code appears to run cleanly. The errors that were
encountered appear to be at the sign up phase.

Specifically, these errors are:

1) When creating an account, the user has unrestricted access to special characters, including the
apostrophe and brackets. This leads to corruption of the SQL Insert statement responsible for
inserting the account into the database. Furthermore, this vulnerability leaves the simulation
sucesptible to SQL injections, which would allow the user to edit the database. To fix this, the
regular expression responsible for special characters must be changed to stop users using these
special characters.

INVESTU — J—H----- 189

Fixing Errors - Investu Development 2

Function ValidatePassword(ByVal Password As String, Optional ByVal MinLength As
Integer = 8, Optional ByVal NumUpper As Integer = 1, Optional ByVal NumLower As
Integer = 1, Optional ByVal NumNumbers As Integer = 1, Optional ByVal NumSpecial As
Integer = @) As Boolean

Dim UpperCase As New System.Text.RegularExpressions.Regex("\p{Lu}")
Dim LowerCase As New System.Text.RegularExpressions.Regex("[a-z]")
Dim Numbers As New System.Text.RegularExpressions.Regex("[0-9]")

Dim Specials As New System.Text.RegularExpressions.Regex("["a-zA-Z0-9]")
If Len(Password) < MinLength Then Return False

If UpperCase.Matches(Password).Count < NumUpper Then Return False

If LowerCase.Matches(Password).Count < NumLower Then Return False

If Numbers.Matches(Password).Count < NumNumbers Then Return False

If Specials.Matches(Password).Count < NumSpecial Then Return Fals

Return True
End Function

These regular expressions determine the composition of the password. By changing this line:
If Specials.Matches(Password).Count < NumSpecial Then Return False

To:

If Specials.Matches(Password).Count >= 1 Then Return False

Then we can successfully prevent users from using special characters in their password.

The same must also be applied to the username, for the same reasons. To do this, a new function is
required, to check the number of special characters in the username.

Function ContainsSpecialChars(ByVal NewUsername As String)
Dim Specials As New System.Text.RegularExpressions.Regex("["a-zA-Z0-9]")
If Specials.Matches(NewUsername).Count = © Then
Return False
End If

Return True

End Function

This function can then be called in ‘ValidateUsername’, using a conditional.

INVESTU — J—H-----

190

Testing 2 - Investu Development 2

Trying to create an account with a special character in the password now returns an error:

SIGN UP

Welcome to Investu! Please Usemame
enter your details to sign up. |Dave

Password
| Password1%

prototyped

Invalid Password - Passwords must have at least 1 upper case character,
1 number and more than 2 total characters. Passwords cannot contain
special characters.

Trying a username with a special character, but a valid password, returns this error:

o
SIGN UP
Welcome to Investu! Please Lsemame
enter your details to sign up. |Harr-_.-=;-;,“£"55 |
Passwaord
|F‘asswnrd1 |
prototyped x

You username and password cannot contain special characters.

INVESTU — J—H----- 191

Feedback #4 — Client — Investu Development 2

The end of the second development represents a fairly significant milestone in the creation of Investu,
and as such it seems appropriate to co-ordinate again with the client to ensure that the simulation is
headed in the expected direction, and the developments made are along the correct lines.

The following is an email exchange with the client.

Me

“Mr Butterworth,

Attached is instructions for accessing the simulation. Could you please have a look at the program and let
me know your thoughts regarding the progress so far? If you have any suggestions let me know.

Thanks,

Joe”

Client

“Joe,

I've had a look at the program — very impressed! Looks really good so far. | made myself an account and
had a play. | showed a class of mine during a lesson and they seemed very interested. | have been
making some trades here and there and I'm very pleased that progress is saved now so that | can close it
and then come back later at the same position | left. ’'m going to open some high-risk high-reward
positions and leave them for a few days — I'll let you know how | get on.

Keep up the good work! Message me if you have any more questions or progress.

Thanks,

Gazza B

INVESTU — J—H----- 192

Final Conclusion — Investu Development 2

At the end of Development 1, a list of goals were laid out for Development 2. Those goals were as
follows:

“In the next development of the program the aim is to successfully connect the database to the program, allowing for
the storage of data related to the FTSE 100 and the user account. This will allow for a login system, as well as a
teams system and the ability to save information relating to these two features. Furthermore, once the database is
connected, it will be possible to begin collecting stock market data and storing it. This will require a small, additional
program, that will operate on a server 24/7 in order to collect data.”

Having finished Development 2, it is now clear that those goals have been successfully completed, as
shown through the analysis of the code and the testing of the development previously.

Furthermore, in the analysis of the simulation, a feature list and an objectives list was created using
feedback from the client and the user. Now that Development 2 has been implemented, we can see how
many of these criteria have been met, and analyse the goals for the third and final development of the
program.

(The items highlighted in green have been successfully implemented into Development 1, as shown in the
Development 1 testing phase in the previous section. The items highlighted in teal have been
successfully implemented into Development 2, as shown in the development 1 testing phase in the
previous section

Ability for admins to view teams list (inferred from client)
Ability for admins to view team details and progress (inferred from client)

Graph to show all time price changes of all stocks (inferred from user)

Ability to create price alerts and be notified when stock reaches current price (inferred from user)
Interface allowing users to see all current alerts on their account (inferred from user)

Interface allowing user to see entire trade history (SIC)

Interface allowing user to see all stocks in the FTSE 100 in a single screen, with details such as
price (SIC)

Notes section displayed in trade history and portfolio with reasons for trade decision (user)

INVESTU — J—H----- 193

Develop
ment 3

Database 3 — Investu — Development 3

The final version of the database has a slightly more complex structure compared to the previous
developments. This version incorporates all of the tables needed to create all of the features outlined in

tblAlerts

7 AlertiD

AccountlD
StockSymbol
AlertPrice
TeamMame
UpQrDown

thiTradeHistory

thiStockDetails

thiStockPriceHistory

the analysis.
tblCrash
%D
CrashMsg
CrashTime
tbiTeams thiTeamUsers thlUserlnfo
¥ TeamiD ¥ TeamUsersiD ¥ AccountiD
TeamMame Account|D Username
Balance TeamlD Passwrd
TeamCode Balance
Admin
Email

¥ TradeiD
AccountlD
BuyOrSell
TradeFrice
stockQuantity
TradeDate
T

»

The final additions to the database are as follows:

tblOpenPositions

7 stockSymbol
Marketsector
Price
Change
StockMame

7D
StockSymbol
StockPrice
FetchTime
FetchDate

StockQuantity
BuyPrice
TradeDate
Account|D
7 OpenPositionIC
StockSymbal
tockhblam

o tbhlTradeHistory — A table that keeps a log of all executed trades made in the simulation; both
buys and sales.

o thlAlerts — A table to keep track of Alerts that have been made

¢ thIStockDetails — A table consisting of all details of every stock in the FTSE100, including name,
price, symbol etc.

INVESTU — J—H----

195

AdminView - Investu — Development 3

A key feature of Investu is the AdminView form — admin accounts are for teachers, and will allow for the
creation, monitoring, manipulation and analysis of teams by teachers. This will be an important aspect in

making Investu successful, as it will allow for teachers to monitor students and hone their trading skills.

AdminView_Load — AdminView - Investu Development 3

Public Class AdminView
Dim AccessDatabaseConnection As String = MainForm.AccessDatabaseConnection

Private Sub AdminView_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.lLoad

FetchTeams ()
End Sub

On the loading of the admin view form, only one routine is called — ‘FetchTeams’. This will access the
database and fetch a list of every possible team.

FetchTeams — AdminView — Investu Development 3

Sub FetchTeams()

Dim TeamID As Integer
Dim TeamInfo As String

TeamInfoCheckedListbox.Items.Clear()
TeamIdCheckedListBox.Items.Clear()

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)

If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "SELECT TeamID, TeamName, Balance, TeamCode FROM tblTeams"

Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

For Each Record In SQLReply
TeamID = Record.item("TeamID")
TeamIdCheckedListBox.Items.Add(TeamID)

TeamInfo = Record.item("TeamName") & " - " & Record.Item("TeamCode") & "
- " & Record.item("Balance")
TeamInfoCheckedListbox.Items.Add(TeamInfo)
Next

ConnectionDb.Close()
Fnd Suh

INVESTU — J—H-----

196

FetchTeams works by querying the ‘tbITeams’ table in the database for the ID of each team and then
displaying their information into display boxes.

Dim TeamID As Integer
Dim TeamInfo As String

The two variables declared are ‘TeamID’ and ‘TeamInfo’. ‘TeamID’ is for the ID of the team, and
‘TeamlInfo’ is for all other information such as name and balance. ‘TeamID’ needs to be its own separate
value with its own separate display box so that it can be used to query the database later. If it was
concatenated with the other information, then it would need to be extracted from that string later when it
was needed. Therefore, it has its own variable and display box.

TeamInfoCheckedListbox.Items.Clear()
TeamIdCheckedListBox.Items.Clear()

The visual display is cleared before the new information is written, to avoid duplication of data.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()
Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

A standard database connection is initiated, using the access database connection from ‘MainForm’. The
connection to the database is opened by querying the connection state and then using
‘ConnectionDB.open’ if the state is found to be closed.

cmd.CommandText = "SELECT TeamID, TeamName, Balance, TeamCode FROM tblTeams"

The SQL statement is a simple Select command, that extracts 4 values from ‘tbITeams’.

For Each Record In SQLReply
TeamID = Record.item("TeamID")
TeamIdCheckedListBox.Items.Add(TeamID)

TeamInfo = Record.item("TeamName") & " - " & Record.Item("TeamCode") & " - "
& Record.item("Balance")
TeamInfoCheckedListbox.Items.Add(TeamInfo)
Next

For every record returned by the SQL Select statement, a series of actions are carried out. First, the ID of
the team is assigned to the variable ‘Teaml|D’, defined earlier. Then, this ID value is added to its own
display box.

Then, the variable ‘TeamInfo’ is assigned the other information. This string is simply for display purposes
and won’t be used further. This is then added to a display box located horizontally along from the ID
display box, so that the information from the team relevant to the ID is displayed horizontally from the ID.
This will allow the admin to clearly see which information relates to which teams.

INVESTU — J—H----- 197

AdminView_Load — AdminView - Investu Development 3

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl.Click
If ValidateInputs(TeamNameBox.Text, TeamCodeBox.Text) Then
CreateNewTeam(TeamNameBox.Text, TeamCodeBox.Text)
Else
MsgBox("There was an error creating the new team. Your team name may
already be taken or you have entered invalid information.™)
End If
End Sub

One of the capabilities of the AdminViewForm is creating new teams. This sequence is started when the
admin clicks the ‘Create Team’ button. This takes the values of a series of input boxes and uses the data
to create a new team.

If ValidateInputs(TeamNameBox.Text, TeamCodeBox.Text) Then

Else
MsgBox("There was an error creating the new team. Your team name may already
be taken or you have entered invalid information.")
End If

‘Validatelnputs’ is a sub-routine that ensures the data for the new team is in the correct format and will not
cause clashes in the database. If this check is failed, a message box prompt will appear informing the
user.

CreateNewTeam(TeamNameBox.Text, TeamCodeBox.Text)

If the validation function in the conditional returns true, then the sub-routine ‘CreateNewTeam’ is called,
which takes two arguments — the value of ‘TeamNameBox’ and ‘TeamCodeBox'.

INVESTU — J—H----- 198

AdminView_Load — AdminView - Investu Development 3

Function ValidateInputs(ByVal NewTeamName As String, ByVal NewTeamCode As String)

If TeamNameBox.Text = Or TeamCodeBox.Text = Or BalanceBox.Text = "" Then

Return False
Else

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT TeamName, TeamCode FROM tblTeams"
Dim SQLReply As OleDbDataReader = cmd.ExecuteReader
For Each Record In SQLReply
If Record.item("TeamName") = NewTeamName Or Record.item("TeamCode") =
NewTeamCode Then
Return False
End If
Next
End If

Return True
End Function

If TeamNameBox.Text = Or TeamCodeBox.Text = Or BalanceBox.Text = "" Then

Return False
Else

End If
The first validation check ensures that no input boxes are blank. If one is found to be blank, then the
function returns false.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "SELECT TeamName, TeamCode FROM tblTeams"

If all of the input the boxes is not empty, then a connection is initialised.
SELECT TeamName, TeamCode FROM tblTeams

The SQL statement simply selects every ‘TeamName’ and ‘TeamCode’ from the ‘tbITeams’ table.

INVESTU — J—H----- 199

For Each Record In SQLReply

If Record.item("TeamName") = NewTeamName Or Record.item("TeamCode") =
NewTeamCode Then
Return False
End If
Next

Then, a For-Loop loops through all of the team information returned and compares it to the data passed
to the function. If any data is found to match, it means that there is a collision and the code or name has
already been taken. This causes the function to return false.

INVESTU — J—H----- 200

CreateNewTeam — AdminView — Investu Development 3

Sub CreateNewTeam(ByVal NewTeamName As String, ByVal NewTeamCode As String)
Dim Balance As Integer = BalanceBox.Text * 100

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "INSERT INTO tblTeams (TeamName, TeamCode, Balance) VALUES
('" & NewTeamName & "','" & NewTeamCode & "','" & Balance & "')"

cmd. ExecuteNonQuery ()

ConnectionDb.Close()

MsgBox("A new team with the name " & NewTeamName & " and team code " &
NewTeamCode & " has been created.")

FetchTeams ()

End Sub

One of the most important features of the AdminView form is the ability for teachers to create teams for
their students. This is done through the ‘CreateNewTeam’ sub-routine.

Dim Balance As Integer = BalanceBox.Text * 100

There is a section of the admin view form that has input boxes for the user to input information for a new
team. One of these boxes will take the value for the new teams balance.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

A standard database connection is initialised in order to insert the new team information into the database.

cmd.CommandText = "INSERT INTO tblTeams (TeamName, TeamCode, Balance) VALUES ('" &
NewTeamName & "','" & NewTeamCode & "','" & Balance & "')"

The Insert statement takes 3 values and inserts them into ‘tbITeams’. These values are:

e TeamName — The name of the team that will be displayed to users

e TeamCode — The code needed by students to join teams. This is a 5 digit code that is effectively
a password, so that only the students with the code can join the team.

e Balance — The teams starting balance

MsgBox("A new team with the name " & NewTeamName & " and team code " & NewTeamCode & "

has been created.")

The admin is then informed that their team creation was successful.

INVESTU — J—H----- 201

Note that the input boxes used are the masked-input version of the textbox control. Each textbox has a
mask, that will only permit certain data to be written. This is a similar validation method to regular
expressions, without the need for more code. The masks for each box is as follows:

TeamNameBox

Mask — aaaaaaaaaaaaaa

This mask means that only alphanumeric characters can be entered into the box, as defined in the
VB.NET documentation below:

3 Alphanumeric, optional. If the AsciiOnly property is set to true, the only characters it will accept are the ASCII letters a-z and A-Z.
This mask element behaves like the "A" element.

TeamCodeBox

Mask — LLOOO

This mask means that the first two characters must be capitalised letters, and the last three must be
numbers. The mask also means that the code must be 5 or less characters long.

The VB.NET documentation for L and 0 is shown below:

L Letter, required. Restricts input to the ASCII letters a-z and A-Z. This mask element is eguivalent to [3-zA4-Z] in regular
expressions,

0 Digit, reguired. This element will accept any single digit between 0 and 9.

BalanceBox
Mask — 000000

This mask means that the balance box will only accept numbers between 0 and 9, and a maximum of 6.

0 Digit, required. This element will accept any single digit between 0 and 9.

INVESTU — J—H-----

202

TeamIDCheckedListBox_IltemCheck — AdminView — Investu Development 3

Private Sub TeamIdCheckedListBox_ItemCheck(ByVal sender As Object, ByVal box As
System.Windows.Forms.ItemCheckEventArgs) Handles TeamIdCheckedListBox.ItemCheck

If box.NewValue = CheckState.Checked Then
For index = @ To TeamIdCheckedListBox.Items.Count - 1
If index <> box.Index Then
Me.TeamIdCheckedListBox.SetItemChecked(index, False)
Me.TeamInfoCheckedListbox.SetItemChecked(index, False)
Else
TeamInfoCheckedListbox.SetItemChecked(index, True)
End If
Next

End If

This sub-routine is taken from Development 1 and modified slightly. The sub-routine makes it so that both
list boxes are selected when one of them is selected. It also ensures that only one row can be selected at

a time, by unchecking all boxes when a new box is checked.

INVESTU — J—H-----

203

FetchTeamInfo — AdminView — Investu Development 3

Sub FetchTeamInfo()
TeamDetailsListBox.Items.Clear()
Dim TeamID As Integer = TeamIdCheckedListBox.Text

Dim Balance As Integer
Dim TeamName As String =

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand
Dim SQLReply As OleDbDataReader

cmd = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT * FROM tblTeams WHERE TeamID=" & TeamID & ""

SQLReply = cmd.ExecuteReader
For Each Record In SQLReply

TeamName = Record.item("TeamName")
Balance = Record.item("Balance") / 100

TeamDetailsListBox.Items.Add("You are viewing the details of " &
Record.item("TeamName") & " - Team Code: " & Record.Item("TeamCode"))

TeamDetailsListBox.Items.Add("The team currently has £" & Balance)
TeamDetailsListBox.Items.Add("")

TeamDetailsListBox.Items.Add("The following are the members of this
team:")

FetchUsersInTeam(TeamID)
Next

TeamDetailsListBox.Items.Add("")
TeamDetailsListBox.Items.Add(TeamName & " has the following open positions;")

cmd = ConnectionDb.CreateCommand

cmd.CommandText = "SELECT * FROM tblOpenPositions WHERE TeamName='" & TeamName

g "
SQLReply = cmd.ExecuteReader
For Each Record In SQLReply
TeamDetailsListBox.Items.Add(Record.item("StockSymbol") & " - " &
Record.item("StockQuantity") & " - " & Record.item("BuyPrice") & " - " &
Record.item("TradeDate"))
Next
End Sub

INVESTU — J—H----- 204

The sub-routine ‘FetchTeamlnfo’ fetches the information regarding a team, when it is selected from the
display box. This allows the admin to look at their list of teams, then select one and receive a more
detailed breakdown of that team.

TeamDetailsListBox.Items.Clear()

The display box for team details is cleared, in case the information of another team is already displayed.

Dim TeamID As Integer = TeamIdCheckedlListBox.Text
Dim Balance As Integer
Dim TeamName As String =

Three variables are declared. ‘TeamID’ is the value in the list box of ID’s. Because of the sub-routine
‘TeamIDCheckedListBox_ItemCheck’ we know that only one value in this box can ever be selected at
once. This means that the selected value is the only value checked, and so that ID is that of the team that
the user wants to query.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand
Dim SQLReply As OleDbDataReader

cmd = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT * FROM tblTeams WHERE TeamID=" & TeamID & ""

SQLReply = cmd.ExecuteReader

A standard database connection is initialised for a Select statement. The statement, which is as follows:

SELECT * FROM tblTeams WHERE TeamID=" & TeamID & "

Selects all of the information relating to the team in question, that is stored in the table ‘tbITeams’.

For Each Record In SQLReply

TeamName = Record.item("TeamName")
Balance = Record.item("Balance") / 100

TeamDetailsListBox.Items.Add("You are viewing the details of " &
Record.item("TeamName") & " - Team Code: " & Record.Item("TeamCode"))

TeamDetailslListBox.Items.Add("The team currently has £" & Balance)
TeamDetailsListBox.Items.Add("")
TeamDetailsListBox.Items.Add("The following are the members of this team:")

FetchUsersInTeam(TeamID)
Next

The data is then displayed into the information display box, for the admin to view.
The sub-routine called at the end ‘FetchUserInTeam’ takes an argument containing the value of ‘TeamID’,
which is used to list every member of the team into the display.

INVESTU — J—H----- 205

TeamDetailsListBox.Items.Add("")
TeamDetailsListBox.Items.Add(TeamName & " has the following open positions;")

After the first database connection finishes, a second one is opened. This time, the data relating to the
team that is found in a different table, ‘tblOpenPositions’ is written to the display. This cannot be done in a
single SQL statement as the team information For-Loop only loops once, whereas ‘tblOpenPositions’ will
typically contain many entries per team. The queries have therefore been split into two sections.

The lines of code above separate the display visually.

cmd.CommandText = "SELECT * FROM tblOpenPositions WHERE TeamName='" & TeamName & "'"
SQLReply = cmd.ExecuteReader

For Each Record In SQLReply

TeamDetailsListBox.Items.Add(Record.item("StockSymbol") & " - " &
Record.item("StockQuantity") & " - " & Record.item("BuyPrice") & " - " &
Record.item("TradeDate"))

Next

The second SQL query extracts relevant information from the ‘tblOpenPositions’ table. The statement
uses ‘SELECT * and so all information in the table is returned, where the condition is met. The condition
is this case looks for a match between the values of the ‘TeamName’ attribute and the value of the
variable ‘TeamName’. The reason the team ID is not used is because ‘tblIOpenPositions’ writes a name
not an ID, which is possibly a design mistake that can be corrected in the development of ‘BuyForm’.

After the open positions of the team have been written, the display box contains all of the relevant
information for the team being queried.

INVESTU — J—H----- 206

FetchUsersIinTeam — AdminView — Investu Development 3

Sub FetchUsersInTeam(ByVal TeamID As Integer)

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand
Dim SQLReply As OleDbDataReader

cmd = ConnectionDb.CreateCommand

cmd.CommandText = "SELECT tblUserInfo.Username FROM tblUserInfo, tblTeamUsers,
tblTeams WHERE tblTeams.TeamID=" & TeamID & " AND tblTeamUsers.TeamID =
tblTeams.TeamID AND tblTeamUsers.AccountID = tblUserInfo.AccountID"

SQLReply = cmd.ExecuteReader
For Each Record In SQLReply
TeamDetailslListBox.Items.Add(Record.item("Username"))

Next

End Sub

‘FetchUsersInTeam’ uses cross table parameterized SQL to fetch the members of a team. The users are
connected to teams via a link table called ‘tbITeamUsers’.

SELECT tblUserInfo.Username FROM tblUserInfo, tblTeamUsers, tblTeams WHERE
tblTeams.TeamID=" & TeamID & " AND tblTeamUsers.TeamID = tblTeams.TeamID AND
tblTeamUsers.AccountID = tblUserInfo.AccountID

This SQL statement uses the link table to connect from ‘tblUserInfo’ to ‘tbITeams’. The value being
selected is ‘tblUserInfo.Username’. Values are needed from both ‘tblUserInfo’, ‘tbITeamUsers’ and
‘tbITeamUser’, and so both of them are in the ‘FROM’ section of the query.

The ‘WHERE’ section of the query contains three conditions that are connected via ‘AND’. Firstly, the
‘TeamID’ attribute in ‘tbITeams’ is matched to the ‘TeamID’ variable. Secondly, ‘tbITeamUsers.TeamID’ is
matched to that of ‘tbITeams.TeamID’. This will find all of the entries in the link table who have the
‘TeamlID’ value of the required team. The ‘AccountID’ value of those accounts in the link table whose
‘TeamID’ matched, are then checked against the ‘AccountID’ attribute in the ‘tblUserInfo’ table.

The accounts who match all three of these checks have their username returned into the display box.

SQLReply = cmd.ExecuteReader

For Each Record In SQLReply
TeamDetailsListBox.Items.Add(Record.item("Username"))
Next

This query is executed, and each reply is written to the display box.

INVESTU — J—H----- 207

MainForm - Investu — Development 3

MainForm_Load — MainForm — Investu Development 3

Private Sub MainForm_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.lLoad

AccountID = LoginForm.AccountID
TeamMode = LoginForm.TeamMode

If TeamMode = True Then
TeamName = LoginForm.TeamName

LoginLabel.Text = "Welcome, " & LoginForm.Username & ". (" & TeamName &
ll)ll
ElseIf TeamMode = False Then
TeamName = "@"
LoginLabel.Text = "Welcome, " & LoginForm.Username & ""
End If

Balance = Math.Round(FetchBalance(), 2)
BalanceBox.Text = "£" & Math.Round((Balance / 100), 2)

FetchOpenPositions()
FetchWorldNews()
FetchMarketNews ()
FetchTradeHistory()
LoadDetailsGrid()
FetchAlerts()
CreateChart()
GraphSettings()

GraphScaleComboBox.SelectedItem = "2"

PopulateSymbolArray("C:\Users\Joe\Documents\visual studio 2010\Investu
Writeup\Development 3\StockSymbols.csv")
For L = © To Symbols.Count - 1
SelectStockComboBox.Items.Add(Symbols(L))
Next
End Sub

The loading of the main form is similar to that of Development 2, with the addition of a few lines of code.
These lines call various sub-routines for new features that are being added to enhance the user
experience.

FetchWorldNews ()
FetchMarketNews ()

These two sub-routines will display news for the user, both market specific and global news

FetchTradeHistory()
The trade history of an account can be useful to see which trades were made when, and the result of

each trade. This can help users by giving some context to their progress, and show them where they
made strong or poor trading decisions.

INVESTU — J—H----- 208

LoadDetailsGrid()

This sub-routine will provide an easy-to-understand display of the information of all of the companies in
the FTSE100.

FetchAlerts()

This sub-routine will provide a display with the alerts a user has.

PopulateSymbolArray — MainForm — Investu Development 3

Public Sub PopulateSymbolArray(ByVal FilePath As String)

The code for this sub-routine can be found in Development 2 on page 135.

FetchAlerts — MainForm — Investu Development 3

Sub FetchAlerts()
Dim QueryString As String

If TeamMode Then

QueryString = "SELECT * FROM tblAlerts WHERE TeamName='" & TeamName &
Else
QueryString = "SELECT * FROM tblAlerts WHERE TeamName='@' AND
AccountID=" & AccountID & ""
End If

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
cmd.CommandText = QueryString
Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

For Each Record In SQLReply
If TeamMode Then
AlertsListBox.Items.Add(GetNameUsingID(Record.item("AccountID")) & "

- " & Record.item("StockSymbol") & " - " & Record.item("AlertPrice"))
Else
AlertsListBox.Items.Add(Record.item("StockSymbol") & " - " &
Record.item("AlertPrice"))
End If
Next
ConnectionDb.Close()
End Sub

Development 3 will allow for the creation of alerts. An alert can be set for a specific stock price, and the
user will receive an email notification when the stock price is reached. This will allow users to be alerted
when it's a good time to buy or sell a stock, so that they don’t miss out on good trading opportunities.

INVESTU — J—H----- 209

If TeamMode Then

QueryString = "SELECT * FROM tblAlerts WHERE TeamName='" & TeamName &
Else
QueryString = "SELECT * FROM tblAlerts WHERE TeamName='@©' AND AccountID=" &
AccountID & ""
End If

It first needs to be clarified whether or not the user is in team mode or their personal account. If they are

on team mode, then the SQL query needs to search for the alerts that were made on that team account.

Otherwise, the simulation needs to only retrieve the alerts made on a that account when it was not in
team mode. In this simulation, that is signified by a team name of ‘0’.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
cmd.CommandText = QueryString

INVESTU — J—H-----

210

Timerl_Tick — MainForm — Investu Development 3

Private Sub Timerl_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Timerl.Tick

Dim StockInfoString

Try
Timerl.Interval = 60000

StockInfoString =
FetchStockDetailsString(SelectStockComboBox.SelectedItem)

NameBox.Text = SplitStockInfo(StockInfoString, "Name")
PriceBox.Text = SplitStockInfo(StockInfoString, "Price")
ChangeBox.Text = SplitStockInfo(StockInfoString, "Change")

Seriesl.Points.Clear()
Plot24hrData()
LoadDetailsGrid()
UpdatePortfolio()
GraphSettings()

VolatilityBox.Text = CalculateVolatility(PriceBox.Text, ChangeBox.Text)
Catch ex As Exception

MsgBox(ex.ToString())
End Try

End Sub

This sub-routine is only slightly different to the same sub-routine in the second development.

LoadDetailsGrid()

This being added to the timer-tick simulation keeps the details grid updated and relevant. This means that

the grid is kept up to date with the prices displayed in the details boxes on inspection of specific stocks.

INVESTU — J—H-----

211

FetchTradeHistory — MainForm — Investu Development 3

Sub FetchTradeHistory()

Dim MyConnection As OleDbConnection
Dim Adapter As OleDbDataAdapter

Dim DataSet As DataSet

Dim Tables As DataTableCollection
Dim Source As New BindingSource

MyConnection = New OleDbConnection
MyConnection.ConnectionString = AccessDatabaseConnection
DataSet = New DataSet

Tables = DataSet.Tables

If TeamMode Then
Adapter = New OleDbDataAdapter("SELECT * FROM tblTradeHistory WHERE
& TeamName & "'", MyConnection)

TeamName=
Else
Adapter = New OleDbDataAdapter("SELECT * FROM tblTradeHistory WHERE
AccountID=" & AccountID & " AND TeamName='0'", MyConnection)
End If

Adapter.Fill(DataSet, "[tblTradeHistory]")
Dim View As New DataView(Tables(9))
Source.DataSource = View
DataGridViewl.DataSource = View

DataGridviewl.Columns(@).Width = 5@
DataGridviewl.Columns(1).Width = 50
DataGridviewl.Columns(2).Width = 5@
DataGridViewl.Columns(3).Width = 75
DataGridviewl.Columns(4).Width = 75
DataGridvViewl.Columns(5).Width = 125
DataGridviewl.Columns(6).Width = 50
DataGridvViewl.Columns(7).Width = 5@
DataGridviewl.Columns(8).Width = 80

End Sub

‘FetchTradeHistory’ takes the entire history of every trade made of the current account and displays them

in a ‘DataGridView’ display.

Dim MyConnection As OleDbConnection

The data will be read directly from the database. To do this a series of variables are declared. The first of

which is a standard database connection, declared as ‘OleDbConnection’ type from the ‘OleDb’
namespace.

INVESTU — J—H-----

212

Dim DataSet As DataSet

The dataset extracted from the database will be stored in a variable called ‘DataSet’ of the ‘DataSet’ data
type.

Dim Adapter As OleDbDataAdapter

The variable ‘Adapter’ of the adapter data type. Adapters are used to interact with existing data sources.Vi

Dim Tables As DataTableCollection

When the adapter is used to convert the data from the database into the simulation, it will need
somewhere to put the data. This will be a table represented by the variable ‘Tables’ of the
‘DataTableCollection’ data type.

Dim Source As New BindingSource

The ‘BindingSource’ class encapsulates the data source of a form. The variable ‘Source’ will be used as a
data source for the data in the table.

MyConnection = New OleDbConnection
MyConnection.ConnectionString = AccessDatabaseConnection

A new connection is created to the database. This connection uses a new instance of ‘MyConnection’ and
then ‘ConnectionString’ together.

DataSet = New DataSet
Tables = DataSet.Tables

A new dataset is created. The variable ‘Tables’ is assigned the value ‘Dataset.Tables’. ‘Dataset.Tables’
represents the collection of tables contained within the dataset.

If TeamMode Then
Adapter = New OleDbDataAdapter("SELECT * FROM tblTradeHistory WHERE
TeamName="" & TeamName & "'", MyConnection)
Else
Adapter = New OleDbDataAdapter("SELECT * FROM tblTradeHistory WHERE
AccountID=" & AccountID & " AND TeamName='®'", MyConnection)
End If

Similarly to in previous sub-routines. The value of the SQL query is dependent on whether or not the user
is in team mode or not.

A new instance of an adapter takes two arguments: an SQL query and a connection string. In the case of
team mode being true, the SQL query will select all of the information from the table ‘tbITradeHistory’
where the team name is that of the user. If it is not true, then only the trades from the user are selected.

Adapter.Fill(DataSet, "[tblTradeHistory]")

INVESTU — J—H----- 213

The ".Fill’ method of the adapter takes two arguments: A dataset, and a data source. The data source is
then mapped onto the dataset using the criteria of the SQL expression in the adapter.

Dim View As New DataView(Tables(9))
Source.DataSource = View
DataGridViewl.DataSource = View

‘View’ is declared as a new instance of the class ‘DataView’. The ‘adapter.Fil’ command fills data into
tables, beginning at 0. Because the query would only return a single dataset, the data that is required will
be in table 0. This data is assigned to ‘View’. ‘View’ is then made the data source of the data grid view,
and hence the data in the database is displayed into the data grid view within the simulation.

DataGridViewl.Columns(3).Width

=75
DataGridViewl.Columns(4).Width = 75
DataGridViewl.Columns(5).Width = 125
DataGridViewl.Columns(6).Width = 50

The display of the data grid view is then changed to best fit the simulation, for ease of viewing.

LoadDetailsGrid — MainForm — Investu Development 3

Sub LoadDetailsGrid()

Dim MyConnection As OleDbConnection
Dim Adapter As OleDbDataAdapter

Dim DataSet As DataSet

Dim Tables As DataTableCollection
Dim Source As New BindingSource

MyConnection = New OleDbConnection

MyConnection.ConnectionString = AccessDatabaseConnection

DataSet = New DataSet

Tables = DataSet.Tables

Adapter = New OleDbDataAdapter("SELECT * FROM [tblStockDetails]",
MyConnection)

Adapter.Fill(DataSet, "tblStockDetails")

Dim View As New DataView(Tables(9))

Source.DataSource = view

StockDetailsGrid.DataSource = view

StockDetailsGrid.Columns(4).Width = 187
End Sub

The purpose of the ‘DetailsGrid’ is to display the details of all of the stock symbols in the
‘StockSymbols.csv’ file. This is done in the same way as the previous sub-routine, however using a
different query.

Adapter = New OleDbDataAdapter("SELECT * FROM [tblStockDetails]", MyConnection)

INVESTU — J—H----- 214

This time, the adapter query is a simple select-all statement, that takes all of the information from the
‘tbIStockDetails’ table. This is not dependent on any criteria — all of the data is always pulls every time the
sub-routine is called. For optimisation in later developments, it could be made to only pull information that
has changed. For example, it is unlikely that the symbols themselves have changed, and so pulling the
entire contents of the ‘symbol’ attribute in the table seems like a waste of processing power, when the
symbols themselves will not have changed since the last time the sub-routine was called. This, however,
will be a development for a later version of the simulation.

Adapter.Fill(DataSet, "tblStockDetails")

The adapter is filled with data from the table ‘tbIStockDetails’ and then the information is displayed in a
data grid view in a tab inside the simulation.

CalculateVolatility — MainForm — Investu Development 3

Function CalculateVolatility(ByVal Price As Decimal, ByVal Change As Decimal)

The code for this sub-routine can be found in Development 2.

FetchBalance — MainForm — Investu Development 3

Function FetchBalance()

The code for this sub-routine can be found in Development 2.

FetchStockDetailsString — MainForm — Investu Development 3

Function FetchStockDetailsString(ByVal StockSymbol As String)

The code for this sub-routine can be found in Development 2.

INVESTU — J—H----- 215

FetchMarketNews — MainForm — Investu Development 3

Sub FetchMarketNews ()

WebBrowser2.DocumentText =
Dim StockNews As String = ""
Try
Dim Document As XmlDocument
Dim DescriptionNodes As XmlNodelList
Document = New XmlDocument()

document.Load("https://finance.google.com/finance/company_news?q=INDEXFTSE:UKX&ei=Hy
NOWZC1MpKKUunwl-gF&output=rss")

DescriptionNodes = Document.GetElementsByTagName("description™)

For L = 1 To DescriptionNodes.Count - 1
Stocknews += DescriptionNodes.Item(L).InnerText

Next
WebBrowser2.DocumentText = StockNews
Catch ErrorVariable As Exception

MsgBox(ErrorVariable.ToString())
End Try

End Sub

‘FetchMarketNews’ employs the ‘System. XML’ import again to extract information from an XML newsfeed
about the FTSE100 and display it in the simulation.

WebBrowser2.DocumentText =

The sub-routine will use a web browser, which is an object in VB that can display web information.
Instead of simply giving a URL for the web browser, we can extract HTML data within the XML and then
write it directly into the document text of the browser, which will give only the relevant stock information,
instead of loading the whole webpage, which is a slow process in VB, especially when loading pages
heavily laden with ads.

Dim StockNews As String =

‘StockNews’ is a variable which will be given the data that needs to be written to the web browser.

INVESTU — J—H----- 216

Try

Catch ErrorVariable As Exception

MsgBox(ErrorVariable.ToString())
End Try

This section of code may be particularly prone to errors as it relies on data extracted from an external
source. The XML data that is parsed cannot be controlled or guaranteed to be parsed correctly, which
could cause errors when it is decoded in the simulation. A try-catch eliminates the chances of this causing
problems for the users of the simulation.

Dim Document As XmlDocument
Dim DescriptionNodes As XmlNodelist
Document = New XmlDocument()

Within the try-catch, two variables are declared and a new instance of the class ‘XmIDocument’ is created.
‘DescriptionNodes’ will be a list of nodes that contain the news that will be written to the web browser.

document.Load("https://finance.google.com/finance/company_news?q=INDEXFTSE : UKX&ei=HynOWZC
1IMpKKUunwl -gF&output=rss")

The document loaded is from an RSS feed on finance.google.com.

DescriptionNodes = Document.GetElementsByTagName("description™)

From the document that was just loaded, the ‘GetElementsByTagName’ method is called. This takes a
single argument: The name of the elements to be indexed. This list of elements is stored in the variable
‘DescriptionNodes’.

For L = 1 To DescriptionNodes.Count - 1
Stocknews += DescriptionNodes.Item(L).InnerText
Next

Once the list of nodes is retrieved, they are looped through using a For-Loop. This loop goes through all
of the elements and appends them to the variable ‘StockNew’, by using the ‘InnerText’ method on the
element. This method is used to get the text contained within the element. In this case, this text is the
actual story in the news article.

WebBrowser2.DocumentText = StockNews

The document text of the web browser is then set to the variable ‘StockNews’ which now contains all of
the news that has been extracted from the XML.

INVESTU — J—H----- 217

FetchWorldNews — MainForm — Investu Development 3

Sub FetchWorldNews()
WebBrowserl.DocumentText = ""
Dim StockNews As String = ""
Try
Dim document As XmlDocument
Dim TitleNodes, DescriptionNodes, LinkNodes, ArticleNodes As XmlNodelList

document = New XmlDocument()
document.Load("http://feeds.bbci.co.uk/news/world/rss.xml")

TitleNodes = document.GetElementsByTagName("title")
DescriptionNodes = document.GetElementsByTagName("description™)
LinkNodes = document.GetElementsByTagName("1link")

ArticleNodes = document.GetElementsByTagName("pubDate")

For L = © To 25

stocknews += "" & "" & TitleNodes.Item(L
+ 2).InnerText & " " & "" & ""

stocknews += "" &
ArticleNodes.Item(L).InnerText & "" & "
"

stocknews += DescriptionNodes.Item(L + 1).InnerText & "
"

stocknews += "" & "Read more at " &
LinkNodes.Item(L + 2).InnerText & "" & "

"

Next

WebBrowserl.DocumentText += StockNews
Catch errorVariable As Exception

MsgBox(errorVariable.ToString())
End Try

End Sub

‘FetchWorldNews’ is a sub-routine with the same purpose — to display news to the user. However, this
sub-routine fetches world news, instead of market specific news. The purpose of displaying this for the
user is to enhance the trading experience and allow users to gauge the current world climate and then
extrapolate its impact on the market.

The sub-routine works in much the same way, with a few differences.

Dim TitleNodes, DescriptionNodes, LinkNodes, ArticleNodes As XmlNodelist

In the previous sub-routine, the news was packaged helpfully into description nodes, that could be simply

extracted. This news source has their data parsed into different XML nodes, which means more nodes
need to be indexed and searched for data. These nodes are: ‘TitleNodes’ for the title of the articles,
‘DescriptionNodes’ for the description of the article, ‘LinkNodes’ for the URL of the article to allow the

users to follow a link and read more on a certain story, and ‘ArticleNodes’, which contain the publish date

of the article.

INVESTU — J—H-----

TitleNodes = document.GetElementsByTagName("title")
DescriptionNodes = document.GetElementsByTagName("description™)
LinkNodes = document.GetElementsByTagName("1link")

ArticleNodes = document.GetElementsByTagName("pubDate")

Similarly to the previous sub-routine, the nodes are then fetched from the XML using a tag name, which is
the name inside the XML used to identify each section of data.

For L = @ To 24

stocknews += "" & "" & TitleNodes.Item(L +
2).InnerText & " " & "" & ""

stocknews += "" & ArticleNodes.Item(L).InnerText
& "" & "
"

stocknews += DescriptionNodes.Item(L + 1).InnerText & "
"

stocknews += "" & "Read more at " &
LinkNodes.Item(L + 2).InnerText & "" & "

"

Next

This particular news site has many articles. Instead of listing all of them, only the top 24 will be displayed.
Therefore the For-Loop loops 25 times. Inside the loop, the information from each of the node lists is
output. The information is formatted using HTML, because the information will be inserted into the
document text of the web browser.

WebBrowserl.DocumentText += StockNews

The information in the new ‘StockNews’ string, containing the information for all 25 news stories, is added
to the document text of the web browser, and therefore displayed for the user to view in the simulation.

SplitStockinfo — MainForm — Investu Development 3

Function SplitStockInfo(ByVal StringToSplit As String, ByVal DetailsToExtract As
String)

The code for this sub-routine can be found in Development 1 on page 66

INVESTU — J—H----- 219

BuyButton_Click — MainForm — Investu Development 3

Private Sub BuyButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)

The code for this sub-routine can be found in Development 2 on page 140.

SelectStockComboBox_SelectedindexChang — MainForm — Investu Development
3

Private Sub SelectStockComboBox_SelectedIndexChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles SelectStockComboBox.SelectedIndexChanged

The code for this sub-routine can be found in Development 2 on page 142.

Plot24hrData — MainForm — Investu Development 3

Public Sub Plot24hrData()

The code for this sub-routine can be found in Development 2 on page 142.

PlotNewPoint — MainForm — Investu Development 3

Sub PlotNewPoint(ByVal XValue As Decimal, ByVal YValue As Decimal)

The code for this sub-routine can be found in Development 2 on page 143.

GetStockChange — MainForm — Investu Development 3

Function GetStockChange(ByVal StockSymbol As String)

The code for this sub-routine can be found in Development 2 on page 115.

GetStockPrice — MainForm — Investu Development 3

Function GetStockPrice(ByVal StockSymbol As String)

The code for this sub-routine can be found in Development 2 on page 117.

INVESTU — J—H----- 220

GetStockName — MainForm — Investu Development 3

Function GetStockName(ByVal StockSymbol As String)

The code for this sub-routine can be found in Development 2 on page 116.

ClosePositionsButton_Click — MainForm — Investu Development 3

Private Sub

ClosePositionsButton_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles ClosePositionsButton.Click

The code for this sub-routine can be found in Development 2 on page 144.

InfoButton_Click — MainForm — Investu Development 3

Private Sub

Dim

Dim
Dim
Dim
Dim

Dim
Quantity) /
Dim

& Value & "
StockName &
your shares

End Sub

InfoButton_Click(sender As System.Object, e As System.EventArgs) Handles

InfoButton.Click

SelectedStock As String = OpenPositionsListBox.SelectedIndex

Value As Decimal = OpenPositions(SelectedStock).StockValue
StockName As String = OpenPositions(SelectedStock).StockName
Quantity As String = OpenPositions(SelectedStock).StockQuantity
StockSymbol As String = OpenPositions(SelectedStock).StockSymbol

CurrentTotalPrice As Decimal = Math.Round(((GetStockPrice(StockSymbol) *
100), 2)
TotalTradePrice As Decimal = Math.Round(((Value * Quantity) / 100), 2)

MsgBox("You bought" & Quantity & " " & StockName & " shares for a price of "

each, costing a total of £" & TotalTradePrice & ". " & vbNewlLine &
" shares are now worth " & GetStockPrice(StockSymbol) & " each, making
worth a total of £" & CurrentTotalPrice & "." & vbNewlLine & "Your net

gain from this trade is £" & TotalTradePrice - CurrentTotalPrice & ".")

As a way of providing more information to the user regarding their current investments, ‘InfoButton’ allows
users to inspect a position and look at some information regarding it.

Dim SelectedStock As String = OpenPositionsListBox.SelectedIndex

Dim Value As Decimal = OpenPositions(SelectedStock).StockValue

Dim StockName As String = OpenPositions(SelectedStock).StockName

Dim Quantity As String = OpenPositions(SelectedStock).StockQuantity
Dim StockSymbol As String = OpenPositions(SelectedStock).StockSymbol

The variables here represent some information about a position. The information is fetched from the

‘OpenPositions’

INVESTU — J—H---

list, which contains information of all of the currently open positions.

221

Dim CurrentTotalPrice As Decimal = Math.Round(((GetStockPrice(StockSymbol) * Quantity) /
100), 2)
Dim TotalTradePrice As Decimal = Math.Round(((Value * Quantity) / 100), 2)

Some calculations are performed to get the total value of the trade when it was made and then the
current total price.

MsgBox("You bought" & Quantity & " " & StockName & " shares for a price of " &
Value & " each, costing a total of £" & TotalTradePrice & ". " & vbNewlLine & StockName &
" shares are now worth " & GetStockPrice(StockSymbol) & " each, making your shares worth
a total of £" & CurrentTotalPrice & "." & vbNewlLine & "Your net gain from this trade is
£" & TotalTradePrice - CurrentTotalPrice & ".")

The information is then displayed to the user.

StoreNewTrade_Click — MainForm — Investu Development 3

Sub StoreNewTrade(ByVal OpenPositionID As String, ByVal CurrentPrice As Integer)

Dim InsertString As String =

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "SELECT StockSymbol, StockQuantity FROM tblOpenPositions
WHERE OpenPositionID='" & OpenPositionID & "'"

Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

For Each Record In SQLReply
InsertString = "INSERT INTO tblTradeHistory (AccountID, StockSymbol,
StockQuantity, BuyOrSell, TradePrice, TradeDate, TeamName) VALUES ('" & AccountID &
"','" & Record.item("StockSymbol") & "','" & Record.item("StockQuantity") &
"',"'Sell','" & CurrentPrice & "','" & DateTime.Now & "','" & TeamName & "')"
Next

SQLReply.Close()

cmd.CommandText = InsertString
cmd. ExecuteNonQuery ()
ConnectionDb.Close()

End Sub

One of the new features added to Development 3 is the trade history of an account. This is done by
storing the details of a buy or sell each time it is made. The information is stored into a table called
‘tbITradeHistory’. It could be argued that this will make ‘tblOpenPositions’ redundant as there will now be
duplication of data, e.g. the same trade information is ‘tbITradeHistory’ as well as ‘tblOpenPositions’. This
may be the case, however time constraints mean merging the tables is impractical at this stage.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)

INVESTU — J—H----- 222

If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

A standard connection is initiated to the database. From here, data will be retrieved that can then be
inserted into the database. This data needs to be extracted from the database first because only some of
the data is available in the simulation — but we can use the information we have to get the rest of the
information from the database.

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT StockSymbol, StockQuantity FROM tblOpenPositions WHERE
OpenPositionID="" & OpenPositionID & "'"

The Select statement fetches the symbol and quantity from the database using the primary key for that
table.

Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

For Each Record In SQLReply

InsertString = "INSERT INTO tblTradeHistory (AccountID, StockSymbol,
StockQuantity, BuyOrSell, TradePrice, TradeDate, TeamName) VALUES ('" & AccountID & "',""
& Record.item("StockSymbol") & "',"'" & Record.item("StockQuantity") & "','Sell’',"'" &
CurrentPrice & "','" & DateTime.Now & "','" & TeamName & "')"
Next

The query is executed. From the reply, a new string is created. This string will be a new SQL statement,
for an insert in ‘tbITradeHistory’. The values returned from the previous query and used as inputs for this
new query. The sub-routine is called on closing the position, and so the value for ‘BuyOrSell’ can be hard
wired as ‘Sell’. The other data is retrieved from the arguments passed to the sub-routine and from
information returned from the query.

SQLReply.Close()

cmd.CommandText = InsertString
cmd. ExecuteNonQuery ()
ConnectionDb.Close()

Once the ‘InsertString’ value has been set, the reply is closed. The new value of the command text is now
‘InsertString’. This is not a query, and so can simply be executed with the ‘ExecuteNonQuery’ method.
The connection is then closed and the process of storing new trade information into the table
‘tbITradeHistory’ is complete.

INVESTU — J—H----- 223

CreateAlertButton_Click — MainForm — Investu Development 3

Private Sub CreateAlertButton_Click(sender As System.Object, e As System.EventArgs)
Handles CreateAlertButton.Click

Dim UpOrDown As String

If SelectStockComboBox.Text <> "Select Stock Symbol"™ Then
If AlertPriceBox.Text > PriceBox.Text Then
UpOrDown = "UP"
Else
UpOrDown = "DOWN"
End If

CreateNewAlert(UpOrDown)
AlertsListBox.Items.Clear()
FetchAlerts()
Else
MsgBox("You need to select a stock from the drop down menu first.")
End If
End Sub

The alerts system will work by providing a small interface in which the user can put a price. There will be
a button, which when activated, will call the above sub-routine.

Dim UpOrDown As String

The variable ‘UpOrDown’ is used as an identifier, so that the simulation knows whether the user has set a
price above the current price — meaning they want to be alerted when the stock price goes above that
price, or a price below the current price, meaning they want to be alerted when the stock price goes
below that price.

For example, if the current stock price is 100, and the user sets an alert price of 105, then it is clear that
the user wants to be alerted when the stock price reaches 105 or above. This is necessary so that the
simulation knows which comparison to make on the current price and the alert price, e.g. knows when to
compare the data with a less than symbol or greater than symbol.

If SelectStockComboBox.Text <> "Select Stock Symbol" Then

Else
MsgBox("You need to select a stock from the drop down menu first.")
End If

A conditional is used to ensure that there is a stock symbol selected — otherwise the simulation would not
know which symbol to apply the alert to.

If AlertPriceBox.Text > PriceBox.Text Then
UpOrDown = "UP"

Else
UpOrDown = "DOWN"

End If

INVESTU — J—H----- 224

Within the conditional, another conditional works out the value of ‘UpOrDown’. If the price of the alert is

above the current price, then ‘UpOrDown’ is set to ‘Up’ — the user is waiting for the price to go up to that
price. If the value of the alert price is less than the current price, then ‘UpOrDown’ is set to ‘Down’ — the
user is waiting for the price to go down to that price.

CreateNewAlert (UpOrDown)

Once the value of ‘UpOrDown’ is set, it is passed as an argument to the sub-routine ‘CreateNewAlert’.
This will add the alert to the database.

AlertsListBox.Items.Clear()
FetchAlerts()

The visual display for the alerts is cleared and then ‘FetchAlerts’ is called to re-populate it, in order to
refresh the display with the newly added alert.

INVESTU — J—H----- 225

CreateNewAlert — MainForm — Investu Development 3

Sub CreateNewAlert(ByVal UpOrDown As String)
If ValidateAlertPrice(AlertPriceBox.Text) Then

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "INSERT INTO tblAlerts (AccountID, StockSymbol,
AlertPrice, TeamName, UpOrDown) VALUES (" & AccountID & ",'" &
SelectStockComboBox.SelectedItem & "','" & AlertPriceBox.Text & "','" & TeamName &
"t,'" & UpOrDown & "')"

cmd. ExecuteNonQuery ()

ConnectionDb.Close()

MsgBox("A new alert for " & NameBox.Text & " at " & AlertPriceBox.Text &
has been set.")
Else
MsgBox("Please enter a valid alert price.")
End If

End Sub

If ValidateAlertPrice(AlertPriceBox.Text) Then
Else
MsgBox("Please enter a valid alert price.")

End If

The price that will be used as the alert price is first validated to ensure it is a valid value.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

A new connection to the database is initiated.

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "INSERT INTO tblAlerts (AccountID, StockSymbol, AlertPrice,
TeamName, UpOrDown) VALUES (" & AccountID & ",'" & SelectStockComboBox.SelectedItem &
"t,'" & AlertPriceBox.Text & "','" & TeamName & "','" & UpOrDown & "')"

The command text, or SQL statement, is given a value. In this sub-routine, an insert statement is used to
insert the alert into the database. All of the attributes of the table are given a value.

cmd. ExecuteNonQuery ()
ConnectionDb.Close()

The insert is executed, and the connection to the database is closed.

MsgBox("A new alert for " & NameBox.Text & " at " & AlertPriceBox.Text & " has been
set.")

The user is informed that their alert creation was successful.

INVESTU — J—H----- 226

ValidateAlertPrice — MainForm — Investu Development 3

Function ValidateAlertPrice(ByVal Price As String)

Dim Numbers As New System.Text.RegularExpressions.Regex("[0-9]")
Dim NotNumbers As New System.Text.RegularExpressions.Regex("[70-9]")

If Numbers.Matches(Price).Count < 2 Then Return False
If NotNumbers.Matches(Price).Count > @ Then Return False

Return True
End Function

The validation for the alert price consists of two regular expressions that check for the number of numbers
and the number of non-numeric characters. If the number of numbers is 0 or 1 then the validation fails. If
the number of non-numeric characters is greater than 0 then the check also fails.

OpenToolStripButton_Click — MainForm — Investu Development 3

Private Sub OpenToolStripButton_Click(sender As System.Object, e As
System.EventArgs) Handles OpenToolStripButton.Click

Dim TeamCode As String
TeamCode = InputBox("Please input the 5 character Team Code here, issued to
you by your teacher", "Join Team", "")

If ValidTeamCode(TeamCode) Then
If UserAlreadyInTeam(AccountID) Then
DeleteUserFromTeam(AccountID)
AddNewPlayerToTeam(AccountID, TeamCode)
Else
AddNewPlayerToTeam(AccountID, TeamCode)
End If
LoginForm.Show()
Me.Close()
Else
MsgBox("The team code you entered was not valid.")
End If
End Sub

The team system has been implemented into the simulation, however there is still no way for users to join
teams, other than being written into the database manually. This sub-routine gives the users the ability to
join a team easily and within the simulation. The sub-routine is called on click of a button in the
‘OpenToolStrip’ control.

Dim TeamCode As String

TeamCode = InputBox("Please input the 5 character Team Code here, issued to you by your
teacher", "Join Team", "")

INVESTU — J—H----- 227

The variable ‘TeamCode’ is defined, and given a value from an input box shown to the user.

If ValidTeamCode(TeamCode) Then

Else
MsgBox("The team code you entered was not valid.")
End If

A conditional is used that ensures the team code entered by the user is valid, by using the function
‘ValidTeamCode'. If the code isn’t valid, then the user is shown an error message.

If UserAlreadyInTeam(AccountID) Then
DeleteUserFromTeam(AccountID)
AddNewPlayerToTeam(AccountID, TeamCode)

Else
AddNewPlayerToTeam(AccountID, TeamCode)

End If

Inside the first validation conditional is another conditional, that this time checks whether or not the user is
already in a team. If they are found to already be in a team, then an extra sub-routine is called, that
removes them from their current team first, then adds them to their desired team. If they are not in a team,
then there is no need to remove them first, so they are added straight to their desired team.

LoginForm.Show()
Me.Close()

After joining a new team, the user is signed out, so that the program can be reloaded in either team mode
or personal account mode.

INVESTU — J—H----- 228

DeleteUserFromTeam — MainForm — Investu Development 3

& "

End Sub

Sub DeleteUserFromTeam(ByVal AccountID As Integer)

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()
Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "DELETE * FROM tblTeamUsers WHERE AccountID=" & AccountID

cmd. ExecuteNonQuery ()
MsgBox("You have been removed from your current team.")
ConnectionDb.Close()

DELETE * FROM tblTeamUsers WHERE AccountID=" & AccountID & "

This sub-routine opens a connection to the database, then executes a Delete SQL statement, which
removes the connection between the user and the team, therefore removing the user from being a
member of the team.

INVESTU — J—H-----

229

UserAlreadyinteam — MainForm — Investu Development 3

Function UserAlreadyInTeam(ByVal AccountID As Integer)

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand
Dim SQLReply As OleDbDataReader

cmd = ConnectionDb.CreateCommand

cmd.CommandText = "SELECT AccountID FROM tblTeamUsers WHERE AccountID=" &
AccountID & ""

SQLReply = cmd.ExecuteReader

For Each Record In SQLReply
Return True

Next

ConnectionDb.Close()

Return False
End Function

Another of the validation checks that need to be done when adding a user to a team is a check to ensure
the user is not already in a team.

"SELECT AccountID FROM tblTeamUsers WHERE AccountID=" & AccountID & ""

This is done through the standard database connection, and then setting the command text to the above
SQL statement. This will return every connection between the account and a team. This will always return
either 1 or O replies — 1 if the user is in a team, or O if the user is not in a team.

For Each Record In SQLReply
AlreadyInTeam = True
Next

Hence, if a record exists, it can be assumed that the user is already in a team, and true can be returned.

INVESTU — J—H----- 230

ValidTeamCode — MainForm - Investu Development 3

Function ValidTeamCode(ByVal TeamCode As String)

If CheckTeamCodeExists(TeamCode) Then
If EmptySpaceInTeam(TeamCode) Then
Return True

Else
ErrorMsg = "The team you are trying to join is already full."
End If
Else
ErrorMsg = "The Team Code you entered does not exist."
End If

Return False
End Function

‘ValidTeamCode’ is another function used to validate the users attempt at joining a team. The function will
only return true once two other functions also return true.

If CheckTeamCodeExists(TeamCode) Then
Else
Msgbox("The Team Code you entered does not exist.")
End If
The first conditional checks that the actual team code exists. If it does not, then a relevant error message

is returned.

If EmptySpaceInTeam(TeamCode) Then

Return True
Else

ErrorMsg = "The team you are trying to join is already full."
End If

Inside the first conditional, the next conditional checks that the team the user is trying to join is not full. If
there is found to be space in the team then the function returns true.

Return False

If the code has not returned true already, then it means the validation failed and false is returned.

INVESTU — J—H----- 231

CheckTeamCodeExists — MainForm — Investu Development 3

Function CheckTeamCodeExists(ByVal TeamCode As String)

If TeamCode = "" Then
Return False
End If

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand
Dim SQLReply As OleDbDataReader

cmd = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT TeamCode FROM tblTeams"
SQLReply = cmd.ExecuteReader

For Each Record In SQLReply
If Record.item("TeamCode") = TeamCode Then Return True
Next
ConnectionDb.Close()
Return False

End Function

‘CheckTeamCodeExists’ queries the database to see if the team code that the user is trying to use to join
a team is valid. This is done via a Select query that returns all of the possible team codes.

SELECT TeamCode FROM tblTeams
Once there is a list of all possible team codes, they can be iterated through, and compared to the users

team code.

For Each Record In SQLReply
If Record.item("TeamCode") = TeamCode Then Return True
Next

If one of the replies is equal to the user team code, then the team code has been proven to exist and the
function can return true.

INVESTU — J—H----- 232

EmptySpacelnTeam — MainForm — Investu Development 3

Function EmptySpaceInTeam(ByVal TeamCode As String)
Dim UsersAlreadyInTeam As Integer = 0

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand
Dim SQLReply As OleDbDataReader

cmd = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT * FROM tblTeamUsers WHERE
tblTeamUsers.TeamID=tblTeams.TeamID AND tblTeams.TeamCode='" & TeamCode & "'"

SQLReply = cmd.ExecuteReader

For Each Record In SQLReply
UsersAlreadyInTeam += 1

Next

If UsersAlreadyInTeam < 4 Then
Return True

End If

ConnectionDb.Close()

Return False
End Function

Dim UsersAlreadyInTeam As Integer = ©

First, the variable ‘UsersAlreadylnTeam’ is declared. ‘UsersAlreadylnTeam’ is a count of how many
accounts are currently in the team. If this is less than 4, then there will be space in the team for the new
user to join. If it is 4, then the team is full and the user can't join.

cmd.CommandText = "SELECT * FROM tblTeamUsers WHERE tblTeamUsers.TeamID=tblTeams.TeamID
AND tblTeams.TeamCode='" & TeamCode & "'"

The simulation has the value of ‘TeamCode’, however in order to query the link table, the primary key
identifying the team is needed. This is “TeamI|D’.

The SQL statement needs to use two clauses in the ‘Where’ section of the query. The first ensures that
the data retrieved is that which has matching ‘TeamID’ values, and the second ensures that only the data
of teams with a matching team code is retrieved.

This use of cross-table parametrized SQL reduces the need for two SQL statements, making the process
of querying the database more efficient.

For Each Record In SQLReply
UsersAlreadyInTeam += 1
Next

INVESTU — J—H----- 233

Every record that is returned from the query represents a single line returned from ‘tblITeamUsers’.
‘tbITeamUsers’ is a link table and so each line represents the connection of a user to a team. Therefore
by counting the number of replies, we can work out how many users are in the team.

‘UsersAlreadylnTeam’ is incremented by 1 each time.

If UsersAlreadyInTeam < 4 Then
Return True
End If

Return False

If the number of users in the team is less than 4, then the function returns true. If the function has not
exited by the time it gets to the end, then it means that there is no space in the team, and so false is
returned.

INVESTU — J—H----- 234

AddNewPlayToTeam — MainForm — Investu Development 3

Sub AddNewPlayerToTeam(ByVal AccountID As Integer, ByVal TeamCode As String)

Dim TeamID As Integer
Dim TeamName As String = ""

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)

If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand
Dim SQLReply As OleDbDataReader

cmd = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT TeamID, TeamName FROM tblTeams WHERE TeamCode='" &
TeamCode & """

SQLReply = cmd.ExecuteReader

For Each Record In SQLReply
TeamID = Record.item("TeamID")
TeamName = Record.item("TeamName")
Next

SQLReply.Close()

cmd.CommandText = "INSERT INTO tblTeamUsers (AccountID, TeamID) VALUES (" &
AccountID & ",'" & TeamID & "')"

cmd. ExecuteNonQuery ()
MsgBox("You have joined " & TeamName & "")
ConnectionDb.Close(

End Sub

After all of the validation checks are passed, the user is finally allowed to join the team. This is done via
the ‘AddNewPlayerToTeam’ sub-routine, that takes two arguments: ‘AccountID’ and ‘TeamCode’.

cmd.CommandText = "SELECT TeamID, TeamName FROM tblTeams WHERE TeamCode='" & TeamCode &

win

The value of ‘TeamCode’ is used in the first SQL statement of the sub-routine, which retrieves the
‘TeamID’ value from the database, as well as the name of the team.

For Each Record In SQLReply
TeamID = Record.item("TeamID")
TeamName = Record.item("TeamName")
Next

The results of the query gives the simulation a value for ‘TeamID’ and ‘TeamName’

SQLReply.Close()

INVESTU — J—H----- 235

cmd.CommandText = "INSERT INTO tblTeamUsers (AccountID, TeamID) VALUES (" &
AccountID & ",'" & TeamID & "')"

The reply is closed, then the command text is set to a new SQL statement. This time, we are using the
value we have retrieved to insert a new link into the link table ‘tbITeamUsers’. The values passed into
‘AccountlD’ and ‘TeamID’ are the values of the account ID which was passed as an argument, and
‘TeamID’ which was retrieved in the previous SQL statement.

cmd. ExecuteNonQuery ()
ConnectionDb.Close()

The SQL is executed, and the connection to the database is closed.

MsgBox("You have joined " & TeamName & "")

The user is informed that they have successfully joined the team.

INVESTU — J—H-----

236

BuyForm - Investu — Development 3

Development 3 adds only a single feature to ‘BuyForm’. That is, the ability for users to add a description

stating any relevant information relating to the buy that they are about to execute. This feature will be

useful for keeping all team members up to date on the reasons for making a trade, as well as reminding

the buyer of the buy and sell conditions of their position.

For the first version of ‘BuyForm’ code, refer to page 74.

Global Variables — BuyForm - Investu Development 3

Public Class BuyForm

The full code for this section can be found on page 74.

BuyForm_Load — BuyForm — Investu Development 3

Private Sub BuyForm_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Lload

MainForm.TeamMode
MainForm.TeamName

TeamMode
TeamName

This code is the same as in Development 1, with the addition of the 2 lines of code above. This
information is important because it will be needed when adding new positions to the database.

The full code for this sub-routine can be found on page 75.

QuantitySlider_Scroll- BuyForm — Investu Development 3

Private Sub QuantitySlider_Scroll(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles QuantitySlider.Scroll

The full code for this sub-routine can be found on page 76.

INVESTU — J—H-----

237

BuyButton_Click — BuyForm - Investu Development 3

Private Sub BuyButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles BuyButton.Click

If NotesBox.TextLength > 255 Then
MsgBox("Your note is too long.")

Else
For L = @ To MainForm.Symbols.Count - 1

If MainForm.Symbols(L) = MainForm.SelectStockComboBox.SelectedItem Then

If MainForm.Balance > (Quantity * StockPrice) Then

MainForm.OpenPositions.Add(New StockAttributes With
{.StockSymbol = MainForm.Symbols(L), .StockValue = StockPrice, .StockQuantity =
Quantity, .OpenPositionID = MainForm.AccountID & DateTime.Now, .BuyDate =
DateTime.Now, .StockName = Stockname})

StoreNewPosition(MainForm.AccountID, Stockname, Stocksymbol,
Quantity, StockPrice, DateTime.Now, TeamName, NotesBox.Text)

UpdateBalance(MainForm.AccountID)

MainForm.UpdatePortfolio()

Me.Close()
Else
MsgBox("You don't have enough money to buy that many " &
Stockname & " stocks.")
End If
End If
Next
MainForm.FetchTradeHistory()
End If
End Sub

If NotesBox.TextLength > 255 Then
MsgBox("Your note is too long.")
Else

The longest value for a string within the database is 255 characters. Therefore, this conditional is

necessary to avoid the Insert statement from crashing the program.

For L = @ To MainForm.Symbols.Count - 1
If MainForm.Symbols(L) = MainForm.SelectStockComboBox.SelectedItem Then

Within the condition is a For-Loop and another conditional. These are used to find the correct stock
symbol that the user is about to buy. Once the value of this symbol is determined, then it can be used to
update ‘OpenPositions’ and the database.

If MainForm.Balance > (Quantity * StockPrice) Then

The final nested-conditional checks that the use has enough money to make the trade. If this final
conditional returns true then the following code executes:

INVESTU — J—H----- 238

MainForm.OpenPositions.Add(New StockAttributes With {.StockSymbol =

MainForm.Symbols(L), .StockValue = StockPrice, .StockQuantity = Quantity, .OpenPositionID
= MainForm.AccountID & DateTime.Now, .BuyDate = DateTime.Now, .StockName = Stockname})
This code is responsible for updating the ‘OpenPositions’ list. The attributes of the list are set to the
relevant values for the trade, such as quantity and price.

StoreNewPosition(MainForm.AccountID, Stockname, Stocksymbol, Quantity, StockPrice,
DateTime.Now, TeamName, NotesBox.Text)

Then, the new position is stored into the database using ‘StoreNewPosition’. This sub-routine takes 8
arguments to create entries into the database in the relevant tables, like ‘tblOpenPositions’ and
‘tbITradeHistory’.

UpdateBalance(MainForm.AccountID)
MainForm.UpdatePortfolio()

The sub-routine ‘UpdateBalance’ is called to store the new balance in the database, and ‘UpdatePortfolio’
is called in the main form in order to update the visual display with the new position.

MainForm.FetchTradeHistory()

‘FetchTradeHistory’ is called to update the trade-history display with the new position added.

INVESTU — J—H----- 239

UpdateBalance — BuyForm — Investu Development 3

Sub UpdateBalance(ByVal AccountID As Integer)

MainForm.Balance = MainForm.Balance - ((Quantity * StockPrice))
MainForm.BalanceBox.Text = "£" & Math.Round((MainForm.Balance / 100), 2)

Dim CommandString As String
If TeamMode Then
CommandString = "UPDATE tblTeams SET tblTeams.Balance=" &
MainForm.Balance & " WHERE tblTeams.TeamName='" & TeamName & "';"

Else
CommandString = "UPDATE tblUserInfo SET tblUserInfo.Balance=" &
MainForm.Balance & " WHERE (((tblUserInfo.AccountID)=" & AccountID & "));"
End If

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
cmd.CommandText = CommandString
cmd . ExecuteNonQuery ()

ConnectionDb.Close()
End Sub

MainForm.Balance = MainForm.Balance - ((Quantity * StockPrice))
MainForm.BalanceBox.Text = "£" & Math.Round((MainForm.Balance / 100), 2)

First, the balance is set within the simulation. As this is a buy trade, the price is taken away from the
current balance. The balance textbox is then formatted to show the new change.

Dim CommandString As String
If TeamMode Then
CommandString = "UPDATE tblTeams SET tblTeams.Balance=" & MainForm.Balance &
" WHERE tblTeams.TeamName='" & TeamName & "';"

Else
CommandString = "UPDATE tblUserInfo SET tblUserInfo.Balance=" &
MainForm.Balance & " WHERE (((tblUserInfo.AccountID)=" & AccountID & "));"
End If

The command string is set to one of two values. If the user is in ‘TeamMode’ then the balance is updated
in the ‘tbITeams’ table. If the user is not in ‘TeamMode’, then the table ‘tblUserInfo’ is updated.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)

If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()
Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = CommandString

cmd. ExecuteNonQuery ()

ConnectionDb.Close()

The connection to the database is initialised, and the SQL command is executed, updating the balance
within the database.

INVESTU — J—H----- 240

StoreNewPosition — BuyForm — Investu Development 3

Sub StoreNewPosition(ByVal ID As Integer, ByVal StockName As String, Byval
StockSymbol As String, ByVal StockQuantity As Integer, ByVal StockValue As Decimal,
ByVal BuyDate As Date, ByVal TeamName As String, ByVal Notes As String)

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "INSERT INTO TblOpenPositions (AccountID, StockName,
StockSymbol, StockQuantity, BuyPrice, TradeDate, OpenPositionID, TeamName) VALUES ('"
& ID & "',"'" & StockName & "','" & StockSymbol & "','" & StockQuantity & "','" &
Stockvalue & "',"'" & BuyDate & "',"'" & ID & BuyDate & "','" & TeamName & "')"

cmd. ExecuteNonQuery ()

cmd.CommandText = "INSERT INTO TblTradeHistory (AccountID, StockSymbol,
StockQuantity, BuyOrSell, TradePrice, TradeDate, TeamName, Notes) VALUES ('" & ID &
"t,'" & StockSymbol & "','" & StockQuantity & "','Buy','" & StockValue & "','" &
BuyDate & "',"'" & TeamName & "','" & Notes & "")"

cmd. ExecuteNonQuery ()
ConnectionDb.Close()
End Sub
End Class

The final sub-routine within ‘BuyForm’ is ‘StoreNewPosition’. This is responsible for entering the
information of a new trade into two tables, ‘tblOpenPositions’ and ‘tbITradeHistory’.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

The connection to the database is opened.

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
cmd.CommandText = "INSERT INTO TblOpenPositions (AccountID, StockName, StockSymbol,
StockQuantity, BuyPrice, TradeDate, OpenPositionID, TeamName) VALUES ('" & ID & "','" &

StockName & "','" & StockSymbol & "','" & StockQuantity & "','" & StockValue & "','" &
BuyDate & "','" & ID & BuyDate & "','" & TeamName & "')"

The first SQL command is set. This command adds a new entry to ‘tblIOpenPositions’. The table has 8
attributes, and therefore the SQL command takes 8 values, taken from the various variables in buy form.

cmd. ExecuteNonQuery ()

The Insert command is executed.

INVESTU — J—H----- 241

cmd.CommandText = "INSERT INTO TblTradeHistory (AccountID, StockSymbol, StockQuantity,
BuyOrSell, TradePrice, TradeDate, TeamName, Notes) VALUES ('" & ID & "','" & StockSymbol
& "','" & StockQuantity & "','Buy’','" & StockvValue & "','" & BuyDate & "','" & TeamName &
"','" & Notes & "')"

Next, a new SQL command is set. This is an Insert statement that makes a new entry in ‘tbITradeHistory’.
This takes much the same values as the previous SQL command, but enters the information into a
different table.

cmd. ExecuteNonQuery ()
ConnectionDb.Close()

The command is executed and the connection closed.

INVESTU — J—H----- 242

Investu Server Program — Version 2 — Development 3

The second version of Investu Server Program will peform the same function as in the previous version,
but with an integrated alerts-sending system added. Users of the simulation will be able to set price alerts,
and receive notifications telling them when the price is reached. In order for this to work when the user is
offline, the server program will be constantly running and checking all of the currently active alerts, and
then sending an email to the user, when their alert price is reached.

Namespaces/Imports — Investu Server Program — Investu Development 3

Imports System.Net.Mail
Imports System.Net
Imports System.IO

Imports System.Xml
Imports System.Data.OleDb

The imports for version 2 of Investu Server Program are the same as in the first version in Development 2,
with the addition of the ‘System.Net.Mail’ import. This import will allow for the sending of mail from the
program.

Global Variables — Investu Server Program — Investu Development 3

Public Class InvestuServerProgram

Dim DBPath As String = "C:\Users\Joe\Documents\visual studio 2010\Investu
Writeup\Development 3\StockInfoDB.mdb"

Public AccessDatabaseConnection As String = "Provider =
Microsoft.Jet.OLEDB.4.0;Data Source =" & DBPath

Dim LoopCount As Integer = 0
Public Symbols As New List(Of String)

The variables for the connection to the database are declared, as well as the ‘Symbols’ list which will be
read in from a .CSV file containing a list of all FTSE100 stock symbols. A variable for counting the loops
of the timer within the program is also declared.

INVESTU — J—H----- 243

InvestuServerProgram_Load - Investu Server Program — Investu Development 3

Private Sub InvestuServerProgram_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.LlLoad
RunningStoppedLabel.Text = "STOPPED"
RunningStoppedLabel.ForeColor = Color.Red
End Sub

For this version, all that happens on load of the program is formatting. This formatting of the display lets
the user know the current state of the program.

InvestuServerProgram_Load - Investu Server Program — Investu Development 3

Function GetFilePath()

Dim FilePath As String

Dim FileDialog As New OpenFileDialog

FileDialog.InitialDirectory = Application.StartupPath

If FileDialog.ShowDialog() = Windows.Forms.DialogResult.OK Then
FilePath = FileDialog.FileName

End If

Return FilePath

End Function

The second version of the server program allows the user to select their own file paths for the database
and stock symbol CSV file. This means that the program can be transported to other systems easily.

Dim FilePath As String
Dim FileDialog As New OpenFileDialog

Two varaibles are declared: a string for holding the resulting file path, and an ‘OpenFileDialog’ to allow
the user to browse their system for files.

If FileDialog.ShowDialog() = Windows.Forms.DialogResult.OK Then
FilePath = FileDialog.FileName
End If

This conditional opens a new file browser, and then waits for the user to press the ‘OK’ button. If they do,
then the value of ‘FilePath’ is set to the currently selected path in the file browser.

Return FilePath

The value of the variable ‘FilePath’ is returned. This function can now be used anywhere that a file path is
needed.

INVESTU — J—H----- 244

StartButton_Click —Investu Server Program — Investu Development 3

Private Sub StartButton_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles StartButton.Click
PopulateSymbolArray(GetFilePath())
Timerl.Start()
Timer2.Start()
RunningStoppedLabel.Text = "RUNNING"
RunningStoppedLabel.ForeColor = Color.Green

End Sub

PopulateSymbolArray(GetFilePath())

When the user opts to run the program, they must first select the list of stock symbols they want to us.
‘PopulateSymbolArray’ is a sub-routine that takes a single argument: a file path for a .CSV file containing
stock symbols. This file is then processed, and all of the stock symbols are extracted into a list. Then, the
program searches for the latest stock information regarding these symbols. It is therefore vital that this list
is up to date and accurate, and so the ability to select a new list every time the program is run is an
important feature.

Timerl.Start()
Timer2.Start()

Two timers are started that control different aspects of the program. These timers will be explained later
on.

RunningStoppedLabel.Text = "RUNNING"
RunningStoppedLabel.ForeColor = Color.Green

The visual display is updated to inform the user that the program is running

INVESTU — J—H----- 245

FillDB_Load - Investu Server Program — Investu Development 3

Sub FillDB()
PopulateSymbolArray(GetFilePath())

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "DELETE * FROM tblStockDetails"
cmd. ExecuteNonQuery ()

For L = @ To 99
cmd.CommandText = "INSERT INTO tblStockDetails (StockSymbol, StockName,
Price, Change) VALUES ('" & Symbols(L) & "','" & GetStockName(Symbols(L)) & "','" &
GetStockPrice(Symbols(L)) & "','" & GetStockChange(Symbols(L)) & "')"
cmd. ExecuteNonQuery ()
Next
ConnectionDb.Close()
End Sub

One of the new features in Development 3 of the main program is a display showing the data of all of the
stocks in the program in a single tab, so that they can easily be viewed. This table is effectively a list of all
stock symbols, and their latest price and change values. However, because the stock symbols list can
change, there needs to be a way of updating this table. ‘FillDB’ is responsible for wiping the information
from this table and then re-writing it, with the update list of stock symbols, and their respective price
information.

Because this is an intensive process, it will only be run on the click of a button, and not automatically.
Once it has been run once, the prices for each stock can be kept up to date by using an ‘Update’ SQL
command every time new price data is retrieved for the table ‘tbIStockPriceHistory’

PopulateSymbolArray(GetFilePath())

The file pathway of the symbol list is retrieved, and the list ‘Symbols’ is updated.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

The database is connected to, and a new command is created.

cmd.CommandText = "DELETE * FROM tblStockDetails™
cmd . ExecuteNonQuery ()

This is responsible for first wiping the table before new stock details are written in. It is immediately
executed.

INVESTU — J—H----- 246

For L = © To 99
cmd.CommandText = "INSERT INTO tblStockDetails (StockSymbol, StockName, Price,
Change) VALUES ('" & Symbols(L) & "','" & GetStockName(Symbols(L)) & "','" &
GetStockPrice(Symbols(L)) & "',"'" & GetStockChange(Symbols(L)) & "')"
cmd. ExecuteNonQuery ()
Next

Then, a For-Loop is initiated, that loops 100 times, because there are 100 stock symbols in the FTSE100.
For each loop of the For-Loop, a new line is written to the table. The values inserted are the symbol, and
then the name, price and change values, retrieved from the ‘GetStock’ functions.

FillDBButton_Click — Investu Server Program — Investu Development 3

Private Sub FillDBButton_Click(sender As System.Object, e As System.EventArgs) Handles
FillDBButton.Click
If Not BackgroundWorker.IsBusy Then
BackgroundWorker.RunWorkerAsync()
End If
End Sub

There are a total of 300 internet queries made every time the database if filled: 3 for each of the 100 stock
symbols. This is obviously highly costly in terms of computer resources and so can cause the program to
slow down and stop the program from doing its main function: fetching stock price data and writing it to
the database.

Therefore, when ‘FillDB’ is called, it is done via a background worker. A background worker is a VB
control that performs tasks in the background — it allows the program to run an operation on a seperate,
dedicated thread, which stops the user interface from appearing to stop responding.

BackgroundWorker_DoWork - Investu Server Program — Investu Development 3

Private Sub BackgroundWorker_DoWork(sender As System.Object, e As
System.ComponentModel.DoWorkEventArgs) Handles BackgroundWorker.DoWork
FillDB()
End Sub

When the background worker is called, the ‘FillDB’ sub-routine is called, and the process of filling the
‘tbIStockDetails’ table with stock infromation begins.

INVESTU — J—H----- 247

PopulateSymbolArray — Investu Server Program — Investu Development 3

Public Sub PopulateSymbolArray(ByVal FilePath As String)

This sub-routine is the same as found in Development 2 on page 135.

Timerl_Tick — Investu Server Program — Investu Development 3

Private Sub Timerl_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Timerl.Tick

This sub-routine is the same as found in Development 2 on page 109.

FetchLatestStockIinfo — Investu Server Program — Investu Development 3

Sub FetchLatestStockInfo()

This sub-routine is the same as found in Development 2 on page 110.

FormatString — Investu Server Program — Investu Development 3

Function FormatString(ByVal A As Integer, B As String, C As String, D As String)

This sub-routine is the same as found in Development 2 on page 112.

INVESTU — J—H-----

248

UpdateDatabase — Investu Server Program — Investu Development 3

Sub UpdateDatabase(ByVal StockSymbol As String, ByVal StockPrice As Decimal, ByVal
StockChange As Decimal)

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "INSERT INTO tblStockPriceHistory (StockSymbol, StockPrice,
FetchTime, FetchDate) VALUES ('" & StockSymbol & "','" & StockPrice & "','" &
TimeOfDay & "','" & Date.Now & "')"

cmd. ExecuteNonQuery ()

cmd.CommandText = "UPDATE tblStockDetails SET Price=" & StockPrice & ",
Change=" & StockChange & " WHERE StockSymbol='" & StockSymbol & "'"
cmd. ExecuteNonQuery ()

ConnectionDb.Close()

End Sub

This sub-routine is the same as the first version of Investu Server Program, with the addition of this code:

cmd.CommandText = "UPDATE tblStockDetails SET Price=" & StockPrice & ", Change=" &
StockChange & " WHERE StockSymbol='" & StockSymbol & "'"
cmd. ExecuteNonQuery ()

The sub-routine now not only adds a new entry to ‘tblIStockPriceHistory’, but also updates the value of the
current price within ‘tbIStockDetails’. ‘tblStockDetails’ is responsible for populating a display with the
information of all stocks in the FTSE100, and so by updating every time a new price is fetched, we have
the most chance of keeping the data within that table accurate.

INVESTU — J—H----- 249

SplitStockinfo — Investu Server Program — Investu Development 3

Function SplitStockInfo(ByVal StringToSplit As String, ByVal DetailsToExtract As
String)

This sub-routine is the same as found in the Testing section of Development 1 on page 96.

CheckAlerts — Investu Server Program — Investu Development 3

Sub CheckAlerts()
Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT * FROM tblAlerts”

Dim SQLReply As OleDbDataReader = cmd.ExecuteReader
For Each Record In SQLReply

If Record.item("UpOrDown") = "UP" And
GetStockPrice(Record.item("StockSymbol")) > Record.item("AlertPrice™) Then

SendAlert(Record.item("ID"), Record.item("AccountID"),
Record.item("StockSymbol"), Record.item("AlertPrice"), Record.item("TeamName"))

ElseIf Record.item("UpOrDown") = "DOWN" And
GetStockPrice(Record.item("StockSymbol")) < Record.item("AlertPrice™) Then

SendAlert(Record.item("ID"), Record.item("AccountID"),
Record.item("StockSymbol"), Record.item("AlertPrice"), Record.item("TeamName"))
End If
FetchAlerts()
Next
ConnectionDb.Close()
End Sub

The database will contain a list of alerts that have been set by users. These alerts need to activate and
the user needs to be notified, when the price they specified is reached. This means that the alert prices
and the actual prices of stocks need to be constantly checked to see if the alert price has been reached.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

In order to do this, a new connection is initiated, and an SQL command is created.

SELECT * FROM tblAlerts

INVESTU — J—H----- 250

The SQL command selects every single alerts from the table.

For Each Record In SQLReply
Next

These alerts are then looped through.

If Record.item("UpOrDown") = "UP" And
GetStockPrice(Record.item("StockSymbol")) > Record.item("AlertPrice") Then

SendAlert(Record.item("ID"), Record.item("AccountID"),
Record.item("StockSymbol"), Record.item("AlertPrice"), Record.item("TeamName"))

Inside the For-Each loop, a conditional checks the status of the alerts.

Alerts can be ‘Up’ alerts, or ‘Down’ alerts. ‘Up’ are alerts such that the stock price is below the alert price,
and the user wants a notification when the current price goes OVER their alert price. ‘Down’ alerts are
alerts such that the stock price is above the alert price, and the user wants a notification when the current
price goes BELOW their alert price. This is important as it determines which logical comparison is made.
If the alert is an ‘Up’ alert, then...

GetStockPrice(Record.item("StockSymbol")) > Record.item("AlertPrice")

... checks whether or not the current price, retrieved with ‘GetStockPrice’, is greater than the alert price. If
this is the case, then the sub-routine ‘SendAlert’ is called, and passed 5 arguments.

ElseIf Record.item("UpOrDown") = "DOWN" And GetStockPrice(Record.item("StockSymbol")) <
Record.item("AlertPrice") Then

SendAlert(Record.item("ID"), Record.item("AccountID"),
Record.item("StockSymbol"), Record.item("AlertPrice"), Record.item("TeamName"))

However, if the alert is ‘Down’ alert then the comparison...

GetStockPrice(Record.item("StockSymbol")) < Record.item("AlertPrice") Then

... checks whether or not the current price is below the alert price. If this is the case, then an alert is sent
to the user, using the same ‘SendAlert’ sub-routine as before.

FetchAlerts()

Once the alert is called, it will be deleted from the list, so ‘FetchAlerts’ is called to update the visual
display of currently active alerts.

INVESTU — J—H----- 251

SendAlert — Investu Server Program — Investu Development 3

Sub SendAlert(ByVal AlertID As Integer, ByVal AccountID As Integer, ByVal StockSymbol
As String, ByVal AlertPrice As Integer, ByVal TeamName As String)

Dim Mail As New MailMessage()

Mail.From = New MailAddress("InvestuAlerts@outlook.com™)
Mail.[To].Add(GetEmailUsingID(AccountID))

Mail.Subject = "Investu Alert"

Mail.Body = "This is an alert for " & GetStockName(StockSymbol) & ". The stock
has reached the price of £" & AlertPrice / 100 & " has been reached. Login to your
Investu account to take further action."

Dim SMTP As New SmtpClient()

SMTP.Host = "smtp.live.com"

SMTP.Credentials = New NetworkCredential("investualerts@outlook.com",
"Alerts@Investu")

SMTP.EnableSsl = True

Try
SMTP.Send(Mail)
Catch exc As Exception
StoreCrashInfo(exc.ToString(), DateTime.Now)
End Try
DeleteAlert(AlertID)
End Sub

‘SendAlert’ sends the notification to the user telling them that their alert has been reached. The sub-
routine makes use of the ‘System.Net.Mail’ import to send an email to the user.

Dim Mail As New MailMessage()
A new instance of the ‘MailMessage’ class is initiated.

Mail.From = New MailAddress("InvestuAlerts@outlook.com")
Mail.[To].Add(GetEmailUsingID(AccountID))

Mail.Subject = "Investu Alert for " & GetStockName(StockSymbol) & ""

Mail.Body = "This is an alert for " & GetStockName(StockSymbol) & ". The stock has
reached the price of £" & AlertPrice / 100 & " has been reached. Login to your Investu
account to take further action.™

4 values are given to the new mail. The sender, receiver, subject, and body. The ‘To’ value is the result of
a function called ‘GetEmailUsinglD’ which uses the ID of the account which wrote the alert, and then uses
it to find the email of that account.

Dim SMTP As New SmtpClient()

SMTP.Host = "smtp.live.com"

SMTP.Credentials = New NetworkCredential("investualerts@outlook.com",
"Alerts@Investu")

SMTP.EnableSsl = True

INVESTU — J—H----- 252

Once the message itself is composed, the sending details are set. ‘'SMTP’ stands for ‘Simple Mail
Transfer Protocol’, and is a set of rules for sending mail. A new SMTP client is initiated, through which the
mail will be sent. The client is given a host, which is ‘smtp.live.com’ in this case, as the Investu email was
made with Outlook, which uses the Live servers.

The credentials of the sender are then set. The ‘NetworkCredential’ class takes two arguments: an email
and password. The email and password are for Investu email account.

SMTP.EnableSsl = True

SSL is enabled to ensure that the communication is encrypted.

Try
SMTP.Send(Mail)
DeleteAlert(AlertID)
Catch exc As Exception
StoreCrashInfo(exc.ToString(), DateTime.Now)
End Try

Once the mail is composed and the sending information is set, the sub-routine tries to send the mail. This
is wrapped in a Try-Catch as it can be prone to errors. If the send is successful, then the user will receive
an email notification with information regarding their alert.

If the send is not successful, the exeception that is thrown is stored in the database and the program
continues.

The alert is then deleted using the sub-routine ‘DeleteAlert’.

INVESTU — J—H----- 253

DeleteAlert — Investu Server Program — Investu Development 3

Sub DeleteAlert(ByVal AlertID As Integer)

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()
Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
cmd.CommandText = "DELETE * FROM tblAlerts WHERE ID=" & AlertID & ""
cmd. ExecuteNonQuery ()
ConnectionDb.Close()

End Sub

DELETE * FROM tblAlerts WHERE ID=" & AlertID & "

The sub-routine connects to the database and uses the above SQL command to remove all trace of the

alert.

FetchAlerts — Investu Server Program — Investu Development 3

Sub FetchAlerts()

Dim MyConnection As OleDbConnection
Dim Adapter As OleDbDataAdapter

Dim DataSet As DataSet

Dim Tables As DataTableCollection
Dim Source As New BindingSource

MyConnection = New OleDbConnection

MyConnection.ConnectionString = AccessDatabaseConnection

DataSet = New DataSet

Tables = DataSet.Tables

Adapter = New OleDbDataAdapter("SELECT * FROM tblAlerts", MyConnection)
Adapter.Fill(DataSet, "tblAlerts")

Dim View As New DataView(Tables(9))

Source.DataSource = View

AlertsGrid.DataSource = View

AlertsGrid.Columns(@).Width = 60
AlertsGrid.Columns(1).Width = 60
AlertsGrid.Columns(2).Width = 9@
AlertsGrid.Columns(3).Width = 90
AlertsGrid.Columns(4).Width = 60
AlertsGrid.Columns(5).Width = 9@

End Sub

INVESTU — J—H-----

254

‘FetchAlerts’ is a purely cosmetic sub-routine, that creates a display with all alerts in the user interface for
the server program. The sub-routine is not necessary for the function of the program, but can be useful
for seeing which alerts are active, for debugging and testing purposes.

Adapter = New OleDbDataAdapter("SELECT * FROM tblAlerts", MyConnection)
Adapter.Fill(DataSet, "tblAlerts")

An instance of the ‘OleDbDataAdapter’ class is initiated, with a Select-all query passed as an argument.
The data set is then filled with matching data from ‘tblAlerts’ which is written to a data grid view control
within the program.

For a more detailed description of this process refer to page 212.

GetEmailUsingID - Investu Server Program — Investu Development 3

Function GetEmailUsingID(ByVal AccountID)

Dim Email As String =

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT Email FROM tblUserInfo WHERE AccountID=" & AccountID

Dim SQLReply As OleDbDataReader = cmd.ExecuteReader
For Each Record In SQLReply
Email = Record.item("Email")

Next

ConnectionDb.Close()
Return Email

End Function

This sub-routine is a simple select SQL statement that assigns the variable ‘Email’ a value from the ‘Email’
column in the database, where the accountID attribute in the table, and the accountID variable within the
program match.

INVESTU — J—H----- 255

GetStockChange — Investu Server Program — Investu Development 3

Function GetStockChange(ByVal StockSymbol As String)

This sub-routine is from Developmemnt 2. A full description and the code can be found on page 115.

GetStockPrice — Investu Server Program — Investu Development 3

Function GetStockPrice(ByVal StockSymbol As String)

This sub-routine is from Developmemnt 2. A full description and the code can be found on page 117.

GetStockName - Investu Server Program — Investu Development 3

Function GetStockName(ByVal StockSymbol As String)

This sub-routine is from Developmemnt 2. A full description and the code can be found on page 116.

StoreCrashinfo — Investu Server Program — Investu Development 3

Sub StoreCrashInfo(ByVal CrashMsg, ByVal CrashTime)

This sub-routine is from Developmemnt 2. A full description and the code can be found on page 118.

Timer2_Tick — Investu Server Program — Investu Development 3

Private Sub Timer2_Tick(sender As System.Object, e As System.EventArgs) Handles
Timer2.Tick

Timer2.Interval = 60000

CheckAlerts()
End Sub

This sub-routine is called once every 60 seconds, and calls the sub-routine ‘CheckAlerts’.

DBPathButton_Click —Investu Server Program — Investu Development 3

Private Sub DBPathButton_Click(sender As Object, e As EventArgs) Handles Button4.Click
DBPath = GetFilePath()
End Sub

Calls the function ‘GetFilePath’ to allow the user to change the file pathway of the database.

INVESTU — J—H----- 256

Testing 1 — Investu Simulation — Development 3

Every sub-routine has been tested individually to ensure it works independently, however these tests
have not been shown. The tests displayed are tests that show multiple sub-routines and functions
working together to produce the desired outcome.

Many of the features of the simulation that haven’t been changed since Development 2 are not tested
here. To see the tests that are not displayed here, refer to Testing in Development 2, on page 163.

MainForm Testing 1

Show that the O x
user can view

24hr History Market News World News Trade History FTSE 100 Details = Alerts
world news and

market news Kabul bombings: Photographer Shah Marai among 25 dead 1o, 30 s 203081125 7
. GMT

within the At least 25 people die in two blasts in the Afghan capital, including AFP photographer Shah Marai.

simulation Read more at http2/www bbe.co.uk/news world-asia-4394633%

Syria war: 'Iranian personnel among dozens dead’ in missile attacks nn 304
2018 07:35:07 GMT

Several military sites are struck, reportedly killing pro-government fighters, including Iranians.

Fead more at http2/www bbc.co uk/news ‘world-middle-east-43947019

India says all villages have electricity s 30 agc 2018 070931 Gz

A village is considered electrified if 10% of homes and public buildings are connected to the grid.
Fead more at http'/www bbe.co uk/news ‘world-asia-india-4 3946049

Dozens of migrants in caravan stuck at US-Mexico border 1on, 30 agr 2013 071433
GMT

President Trump has said the group of Central Americans is a threat to the safety of the US.

Fead more at http:/www . bbe.co.uk/news ‘world-us-canada-£3943522

Founm hald axram Tndia smalactatinan srinal sndan ar mm s mmanoamoneonr e e

Loading the program and clicking the ‘World News’ tab displays the above information.
Note that the current time is shown below:

The last story was posted at 8:11am (top right corner of first story). This shows that the
news is fairly recent.

The market news section uses the same code and such we can assume it works.

This indicates that the requirements set out in the test description have been met and

INVESTU — J—H----- 257

the test has therefore been passed.

Show that when
the user
executes a
trade, the
database table As shown above, the database is currently empty. There are no trades in
‘tbITradeHistory’ | ‘tblTradeHistory’.

updates with a
new entry, and | Within the simulation, the tab containing trade history is also blank:
the ‘Trade
History’ tab in
the tab control
updates with the
new trade.

AccountlD - TeamMame - StockSymbc = BuyOrSell -

24hr History Market News Word News Trade History FTSE 100 Details Alerts
TradelD Account BuyOrSe TradePrice StockQuartity TradeDate TeamMa StockSy Notes

A new trade is made, as shown below:

INVESTU — J—H----- 258

BY Prototype 7

| @ Welenme Bert | Sinn O
’ 24h
o Buy Stock — O * ==

T [0]8 [aQ]

[CAPITA [13365 | 2

[
L Cuartity: Price :I
Cn [23256 | 125157 | 3

I
—_

Capita expected to announce new CED
on 30/04/2018 - Expected increase then. |

—1

Open New Position

Info |_| Close Position £

Making a new trade offer, with the details above, results in the results below:

- O *
24hr History Market Mews World News Trade History | FTSE 100 Details Alerts
TradelD Account BuyOrSe TradePrice StockQuantity TradeDate StockSy1 Motes
» 222 44 Buy 183.65 23256 29/04/2018 19:02 CPIL Capita expbcted to annot
L]

The trade has been written into the ‘Trade History’ display in the tab control.

The database is also updated, as shown below:

INVESTU — J—H-----

259

TradelD -~ AccountlD - |TeamName ~ | StockSymbe - | BuyOrSell ~ | TradePrice - StockQ
| [222 a4 0 CPIL Buy 183.65 23256

Upon closing the position, the data grid view is again updated:

— O x
24hr History Market News Word News Trade History FTSE 100 Details Aletts
TradelD Accourt BuyOrSe TradePrice StockQuantity TradeDate TeamMNa StockSy Motes
3 44 Buy 18365 23256 29/04/2018 19:.02 0 CPIL Capita expec...

223 44 Sell 184.00 23256 29/04/2018 19:04 0 CPIL

Reloading the program results in the same display as above — the trade history
information is retained forever.

This indicates that the requirements set out in the test description have been met and
the test has therefore been passed.

Show that the
trade history
display shows
all items in the
users trade
history.

The account has been used for a few minutes, making buy offers and then selling the
stock immediately. The following is the result:

INVESTU — J—H-----

260

o5l Prototype 7

{[F @ |Welcome, Bert | Sign Out |

[RB.L v

Company Mame Current Balance:
|RECKITT BENCK GRP _ |£97249.00 _
Price Volatility Price Alerts

|5649.71 |[175%] _ _
e e
[98.71 || _

BUY

[AVIVA - Bought 524 FOR £2751 (525 each)

Info

_ _ Close Position

24hr History Market Mews World News Trade History FTSE 100 Details Alerts

TradelD Account BuyOrSe TradePrice StockQuartity TradeDate TeamMa StockSy MNotes
> F 44 Buy 183.65 23256 29/04/2018 19:02 0 CPIL |Capita expec...
223 44 Sell 184.00 23256 29/04/2018 19:.04 0 CPIL
224 44 Buy 1465.20 2382 29/04/2018 19:06 0 GSK.L
225 44 Buy 1668.00 387 29/04/2018 19:.06 0 EXPN.L
226 44 Buy 302.00 4451 29/04/2018 19:.06 0 KGF.L
227 44 Buy 25470 11832 29/04/2018 19:.06 0 OMLL
228 44 Buy 525.00 524 29/04/2018 19:.07 0 AV.L
229 44 Buy 564971 217 29/04/2018 19.07 0 RB.L Highty volatil...
230 44 Sell 1465.00 2382 29/04/2018 19:.07 0 GSKL
23 44 Sell 1668.00 g7 29/04/2018 19:.07 0 EXPN.L
232 44 Sell 255.00 11832 29/04/2018 19:.07 0 OMLL
233 44 Sell 302.00 4451 29/04/2018 19:.07 0 KGF.L
234 44 Sell 5650.00 217 29/04/2018 19.07 0 RBE.L

Notice how there is an entry for a buy offer for ‘AV.L’ but not sale offer — that is

because the position is still open, as show on the left hand side of the simulation in the

‘Open Positions’ display.

261

INVESTU — J—H-----

This indicates that the requirements set out in the test description have been met and
the test has therefore been passed.

Show that the
details grid
displays all of
the information
within
‘tbIStockDetails’.

AALL
ABF.L
ADM.L
ADN.L
AGK.L
AMEC.L
ANTO.L
ARM.L
ASHM.L
AV.L
AZN.L
BA.L
BARC.L
BATS.L
BG.L
BLND.L
BLT.L
BNZL.L
BP.L
BREY.L
BSY.L
BT-A.L

StockSymbc -

T thiStockDetails

StockMName
AMNGLO AMERICAN
ASSOCIAT BRIT FOODS
ADMIRAL GROUP

ABERDEEN ASSET MGMT

AGGREKO
AMEC
ANTOFAGASTA

ARM HOLDINGS
ASHMORE GRP
AVIVA
ASTRAZENECA

BAE SYSTEMS
BARCLAYS

BRIT AMER TOBACCO
BG GROUP

BRIT LAND CO REIT
BHP BILLITON

BUNZL

BP

BURBERRY GROUP

B SKY B GROUP

BT GROUP

MarketSector - Price
UTILITIES 1699.2
CONSUMER STAPLES 2700
FINANCIALS 1995.5
FINANCIALS 316.33
MATERIALS 734.2
CONSUMER DISCRETIOMNA O
EMNERGY 954
FINANCIALS i]
REAL ESTATE 410
FINANCIALS 525
MATERIALS 5083
TECHNOLOGY 613.4
FINANCIALS 208.69
CONSUMER DISCRETIOMNA 4030.5
TELECOM 0
INDUSTRIALS 672
INDUSTRIALS 1534.6
HEALTHCARE 2098
MATERIALS 5374
CONSUMER DISCRECTIOAI 1822
TELECOM 0
TELECOM 248

= | Change
32.2
15
20
0
0.6
0
2.8
0
2.6
0.2
91
2.2
-1.31
65
0
5.4
-1.6
20
2.1
54
0
2.55

Above is the contents of the table ‘tbiStockDetails’. This table is a visual display of the
information for the details of all companies in the FTSE100.

INVESTU — J—H----

262

24hr History Market News World News Trade History FTSE 100 Details Alerts

ABF.L
:l ADM.L
ADN.L
:l AGK.L
AMEC.L
ANTO.L
ARM.L
ASHM.L
AVL
AZN.L
BAL
BARC.L
BATS.L
BG.L
BLMD.L
BLT.L
BNZL.L

i=]=M|

Stock Symbal

CONSUMER 5T...

Market Sector

FINANCIALS
FINANCIALS
MATERIALS

CONSUMER DIS...

ENERGY
FINANCIALS
REAL ESTATE
FINANCIALS
MATERIALS
TECHNOLOGY
FINANCIALS

CONSUMER DIS...

TELECOM

INDUSTRIALS
INDUSTRIALS
HEALTHCARE

MATCDIA &

Price
1699.20
2700.00
1995.50
316.33
734.20
0.00
954.00
0.00
410.00
525.00
50:83.00
613.40
208.69
4030.50
0.00
672.00
1534.60
2038.00

EQT AN

Change
3220
15.00
20.00
0.00
0.60
0.00
2.80
0.00
260
0.20
51.00
220
-1.31
65.00
0.00
5.40
-1.60
20.00

in

Stock Name
ANGLO AMERICAN
ASSOCIAT BRIT FOODS
ADMIRAL GROUP
ABERDEEN ASSET MGMT
AGGREKD
AMEC
ANTOFAGASTA
ARM HOLDINGS
ASHMORE GRF
AVIVA
ASTRAZENECA

BAE SYSTEMS
BARCLAYS

ERIT AMER TOBACCOD
BG GROUF

BRIT LAND CO REIT
BHP BILLITON

BUNZL

=] =]

W

e

Within the simulation, under the tab ‘FTSE100 Details’, the data is written a gridview.

This indicates that the requirements set out in the test description have been met and
the test has therefore been passed.

Show that the
user can click
‘Info’ and see
more
information
relating to their
trade.

Irfa

] MAN GROUP - Bought 12819 FOR £22517.81 (178.78 each)
[] HARGREAVES LANS - Bought 505 FOR £16068.28 (1775.5 each)
ITV - Bought 14020 FOR £20973.92 (149.6 each)

[] PETROFAL - Bought 4438 FOR £26303.16 (606.2 each)

Close Position

INVESTU — J—H----

263

BUY I
| prototyped >

[]MANG
[] HARGH You bought14020 ITV shares for a price of 149.6 each, costing a total of

£20973.92,

[] PETRO ITV shares are now worth 149.6 each, making your shares worth a total
of £20573.92,
Your net gain from this trade is £0.00.

Info Close Position

BTae¥F Temaearko T (B] I ATrE TNTATFAaTInm | 17 7 = rrmer e sy

As the trade has only just been made, the net gain is quoted as £0. If this position was
left open for a while during a weekday, it would state a positive or negative profit
depending on whether the stock went up or down in price.

This indicates that the requirements set out in the test description have been met and
the test has therefore been passed.

Show that when
the user uses
valid data, they
can make a new
alert.

o' Prototype 7

L_? & | Welcome, Bert | Sign Out P
|BLTL v
Company Mame Cument Balance:
|BHP BILLITON | |£13136.84 |

Price Wolatility Price Alerts
15346 |0.0% | 1536
— Create Alet
16 | |
BUY

||:| MAN GROUP - Bought 12813 FOR £22317.81 (178.78 each) |

The price of BHP BILLITON shares is 1534.6. A valid price alert is any integer not
equal to the current price, and not 0. Therefore, 1536 is chosen, as shown in the red
circle on the right.

INVESTU — J—H----

264

Volatity
|0.0% |

Price Alerts
1536 |

| Create Met |

| prototyped -

A new alert for BHP BILLITOM at 1536 has been set.

Clicking ‘Create Alert’ results in the above dialogue.

This indicates that the requirements set out in the test description have been met and
the test has therefore been passed.

Show that the
alert is written to
the database, in
the table
‘tblAlerts’, and
that the alerts
display updates
to show the new
alert.

|f| thlAlerts
AlertlD - | AccountlD ~ | StockSymbol -
37 44 BLT.L

AlertPrice -~ TeamMame -~ UpOrDown -~ Cii
1536 0 up

Above shows the table ‘tblAlerts’ within the database. The alert has been added to the
table.

s Prototype 7

2 o -
IR [helcoms Barty SignOLt 24hr History Market News | World News | Trade History | FTSE 100 Det

037 |BLT.L - 1536

[BLTL v]

Cumrent Balance:
[£13136.84 |

Company Name
[BHP BILLITON |

Price Mlerts
[1536 |

Price
[15346

Volatiity
| [0 |

The alert has been added to the ‘Alerts’ tab in the tab control. Adding more alerts
updates this display:

INVESTU — J—H-----

265

G .
& © | Welcome, Bert | Sign Out 24hr History Market News Word News | Trade History FTSE 1(

GskL) v 037 BLT.L - 1536
Name Current Balance:

|GLAXOSMITHKLINE | [£13136.84 | 042 BP.l - 500

Price Volatility e Alerts [44 GSK . L - 1455

14652 E [1455 |

[284 || |

The database now has the following entries in ‘tblAlerts’:
AlertlD - | AccountlD - | StockSymbol - | AlertPrice - | TeamMame - | UpOrDown - |
37 44 BLT.L 1536 0 up
432 44 BP.L 500 0 DOWMN
—— 44 GSK.L 1455 0 DOWMN
* (New)

This indicates that the requirements set out in the test description have been met and
the test has therefore been passed.

Show that the
user can delete
an alert, and
that the
database and
display will
update to show
the change.

AlertlD - | AccountlD ~ | StockSymbol - | AlertPrice - | TeamMName - | UpOrDown - |C
27 44 BLT.L 1536 0 up
a2 44 BP.L 500 0 DOWN
44 44 G5K.L 1455 0 DOWN
* (New)

The database has the content shown in the above screenshot.

We will go into the simulation, select an alert and then click ‘Delete’.

INVESTU — J—H----

266

2br History Market News Wordd News Trade History

037 |BLT.L - 153€¢
7 042 BP.L - 500

](GSK.L - 1455

7

Delete Mert

Clicking delete then causes the display to update, with the alert removed, as shown
below:

2dhr History Market News Word News Trade History FTSE 100 Details ¢

037 |BLT.L - 1536
| 042 |BP.L - 500

The database now only has two alerts in, as opposed to three at the start of the test:

INVESTU — J—H----

267

|f| thlAlerts

AlertiD -

37
42

#Deleted
* M aw

AccountlD -

44 BLT.L
44 BP.L

#Deleted #Deleted

StockSymbol -

AlertPrice

~ | TeamName -
1536 0
5000

#Deleted #Deleted

UpQOrDown -~
up

DOWN
#heleted

This indicates that the requirements set out in the test description have been met and
the test has therefore been passed.

Show that alerts
execute when
the price of the
stock exceeds
the alert price,
and that the
user is notified
by email.

Some alerts are created on an account called ‘Bert’. This account included an email
when it was created.

The account creates a series of alerts, with the alert price very close to the actual
price. This will mean that even a small change in price should result in an alert. The
following screenshot shows the alerts that have been set:

e Pmtml:)r.;Je? -]

[@ |Welcome, Bert | Sign Out 24hr History Market News World News Trade History FTSE 100 Details Aletts
[IMATL v o447 BARC.L - 209
e) e 049 THG.L - 4603
ice Volatility Price Alerts O 51 CCL . L - 47 76
[z} |[o27] [3291 | 052 cCL.L 4773
[s || | o053 BNZL.L - 2106

054 BNZL.L - 2104
o565 JMAT.L - 3293
‘ ‘ DS6<JMAT.L - 3201

Note the price in the left red circle for the ‘JMAT.L’ stock is very close to the alert price
in the right hand circle. The other alerts also have alert prices very close to the actual
price.

Now, we wait a while for price changes.

After a while, the following email appears in my inbox:

INVESTU — J—H-----

268

w1l Vodafone WiFiCall = 09:52 @ 9 % 100% (o=

& Mailboxes Edit

Inbox

Q Search

Investu Mail 09:45
Investu Alert

This is an alert for JOHNSON MATTHEY PLC.
The stock has reached the price of £32.93 has...

Investu Mail 09:44

Investu Alert
This is an alert for CARNIVAL. The stock has
reached the price of £47.73 has been reached....

The University of Warwick Friday
Open the door to your next adventure
Hello Joseph.

Clicking on one of the emails shows the following:

w!l Vodafone WiFiCall = 09:52 @ v % 100% ()
< Inbox N\
Investu Mail
To: joehewett1@gmail.com Details @

Investu Alert
Today at 09:45

This is an alert for JOHNSON MATTHEY
PLC. The stock has reached the price of
£32.93 has been reached. Login to your
Investu account to take further action.

This indicates that the requirements set out in the test description have been met and

the test has therefore been passed.

Show that new
alerts are
rejected if the

Invalid alert data includes entering the current price of the stock as the alert price,
trying to make an alert with blank entries, or using letters as the alert price.

INVESTU — J—H-----

269

input data is
invalid.

a5 Prototype7

Lj E_EJ Welcome, Bert | Sign Out

|
|

|GSK.L

St |

Company Mame

|GLM<DSI'U'IITHKLINE

Price

Volatility

14652

| [1.94%

Change

e]

Price Alerts

|1465.2

| Create Alet

prototyped

Please enter a valid alert price.

Cument Balance:
|£100000.00 |

Price Alerts
| 1465.2 |

| Create Mlet |

This shows that entering an alert price equal to the current price will not be accepted.

a5 Prototype7

Lj E_EJ Welcome, Bert | Sign Out

|GSK.L

St |

Company Mame

|GLM<DSI'U'IITHKLINE

Price

Volatility

14652

| [1.94%

Change

e]

Cument Balance:
|£100000.00 |

Price Mers
[|

Create Alert

INVESTU — J—H-----

270

Price Mers

| Create Mt |

prototyped >

— Please enter a valid alert price,

This shows that alerts with blank inputs will not be accepted.

! Prototype 7

Lﬁ Q;_EJ Welcome, Bert | Sign Out

|GSHZ.L u|

Company Name Cumrent Balance:
|GLAXOSMITHKLINE | |£100000.00 |

Price Volatility Price Alers
|1465.2 |[184% | |Fa7 |

Change Create Mlert
|28.4 || |

Price Alerts
[FG7 |

| Create Mlet |

prototyped >

— Please enter a valid alert price,

This shows that non-numeric inputs will not be accepted in the alert price box.

INVESTU — J—H----

271

This indicates that the requirements set out in the test description have been met and
the test has therefore been passed.

Show that the
user can join a
team from within
the simulation.

A team is created in the database:

7 toiTeams
TeamiD ~ TeamMame ~ | Balance ~ TeamCode - ClickioAdd -~
25 ATeamWithNoName 10000000 ATI123
* (New) | 0

There is no members in this team, as shown by the blank link table ‘tbITeamUsers’:

B i ST -

TeambUsersl ~ | AccountlD - TeamlD - |Ci

Inside the simulation, this button is clicked:

Welcome, Bert | Sign Out

Select Stock Symbol v|

Comparny Mame

g R LI S R H

This results in the following dialogue:

= & Welcome, Bert | Sign Out oA History
|Select:5tc Join Team %
Company | Flease input the 5 character Team Code here,

issued to you by your teacher

A
fu
3
0
HL

Price

|

Change

The code entered is ‘AT123’. This results in the following dialogue:

INVESTU — J—H----

272

o
L_:": & | Welcome, Bert | Sign Out

Select § prototyped w

Compan ilance:
You have joined ATeamWithMoMame |
Frice -

[ox | |

Change T Cre a-te Hert

The account is then forced out of the simulation back to the sign-in form. Upon signing
back in (with team mode selected), the following dialogue is shown at the top:

o Prototype 7

L_:": & | Welcome, Bert. (ATearnWithMoMame) | Sign Out

%{ed Stock Symbol »

To prove further that the user is in the team, we can look at the link table
‘tbITeamUsers’:

T thiTeams- | thrreamu-jer_c;'-.._

TeamUsersl ~ | AccountlD - TeamlID ~ |Cil
15 44 25

The account ID of the account ‘Bert’ is 44, and the team ID of ‘AteamWithNoName’ is
25. Therefore a link between the two exists, and the user is a member of the team.

This indicates that the requirements set out in the test description have been met and
the test has therefore been passed.

Show that the
user is rejected
from the team if
it is full or the
team code is
invalid.

A new account called Billy is created via the sign-up form.

ol Prototype 7

5 @ | Welcome, billy | Sign Out

qeled Stock Symbol v

INVESTU — J—H-----

273

The link table ‘tbITeamUsers’ is filled with entries that link a total of 4 accounts to the
team. The maximum number of accounts in a team is 4. Therefore, when Billy tries to
join the team, there should be an error.

ol

(=]

& @ | Welcome, billy | Sign Out

Select Stog] Prototyped x

Compary Mg

The team you are trying to join is already full.

l

Price

Channes ~ . .

H

Billy is rejected from the team.

Billy tries to join another team with a team code that does not exists (Only 1 team
exists in the database, the team code of which is ‘AT123'.)

as!
L5 @ | Welcome, billy | Sign Out by b
5ele Join Team >
C Please input the 5 character Team Code here,
E issued to you by your teacher
Cancel
Price
XD
Char| | A

L_? & | Welcome, billy | Sign Out

Select Stq prototyped X

any

[y}

]

3
=)

The Team Code you enterad does not exist, :I

Price

|
]

Change [Treate flen

INVESTU — J—H----

274

Billy is not able to sign up to this team either, as the team code does not exist.

This indicates that the requirements set out in the test description have been met and

the test has therefore been passed.

INVESTU — J—H-----

275

AdminView Testing 1

Show that
admins
load into
AdminView
when they
sign in via
the sign in
form.

7] tbistockDetails |~ tbiTradeHistory |] tbiTeamUsers |] tbiTeams | 7 tblUserin
AccountlD - | Username - | Passwrd - | Balance -~ Admin -
+ 46 Admin Passwordl 1]

A new admin is written into the database. Note the check in the ‘Admin’ attribute.

g5 Investu Login

A real-time stock market simulator for students.

|ser name

|;’-‘u:|min| Hawvent got an
account? Sign Up

Passward

[] Team Mode Sign Up

Upon clicking login with the admin details added, the following is displayed:

INVESTU — J—H-----

276

-]
({m|
sE 1213 B S =
&2 = 3 a o
2|2 = Sl c 3
‘:-‘m = = s] 5
|8 o g = = =
] =% w m =
a 12 z E g
o
m E n
g
~
o <2 B
o @2n
m - =
= fag
] ER-)
H o oW
— o3 o
g -
E -)
[[=Ts]
3
W
m
[
m
9]
=
m
o
g
=}
m
=
r
w
O
X

Note that there is no information displayed because there are currently no teams or
accounts to view.

This indicates that the requirements set out in the test description have been met and the
test has therefore been passed.

INVESTU — J—H----- 277

Show that CREATE NEW TEAM

admins

can create Team Mame _

a team, [TestTeam5400 | Yj’;;ftiﬁ‘:[g:nﬁau';iﬂgﬂ
and the Sign Up Code the team code.
team is |TI'5DD| |

inserted

into the Starting Balance (£) Create Mew Team
database. | 100000__ |

Entering the above information into the boxes given, then pressing ‘Create New Team’,
results in the following dialogue:

CREATE NEW TEAM
prototyped >

A new team with the name TestTeam3400 and team code TT200 has been
created.

Going into the database, under the table ‘tbITeams’, the following is shown:

lfl tblstockDetails |- tbiTradeHistory-| [tbiTeamsers | [T tbiUserin
TeamlID - TeamMName ~ | Balance ~ | TeamCode
20 TestTeam5400 10000000 TT200

Note that the use of masked textboxes means it is not possible to enter invalid data into
any of the boxes. See page 201 for more information.

This indicates that the requirements set out in the test description have been met and the
test has therefore been passed.

Show that | Creating three teams results in the following list displaying in the display box:
the list of
created
teams is
displayed
in the
display.

INVESTU — J—H----- 278

o5 Admin View

YOUR TEAMS

(126 |TestTeam5400 - TT500 - 10000000
(127 |GreertTeam4 - FGEEE - 10000000
[]28 |KingKong - KK344 - 10000000

This indicates that the requirements set out in the test description have been met and the
test has therefore been passed.

Show that | Selecting one of the teams in the list box results in the following display in the display box

these on the right hand side of the form:

teams can

be a5 Admin View - O X

selected,

and more YOUR TEAMS SELECTED TEAM DETAILS

information g::;:;:::g? Fggégﬂdggggggﬂ _l‘fﬁz taeraer:isuwrirr;%ttlr;ehgitzill SS)JE;BeStTeamMDD - Team Code: TT500

|atin to []28 |KingKong - KK344 - 10000000
re g The following are the members of this team:
the team . y
. TestTeam5400 has the following open positions;

will

display.
Note that there are no members or open positions, because the team has just been
created.
This indicates that the requirements set out in the test description have been met and the
test has therefore been passed.

Show that | A new account is created called Timmy. Timmy joins the team ‘TestTeam5400’ via the sign

adding up feature within the simulation, using the code’ TT500’. Timmy is then signed in, in team

members mode. Timmy makes 2 trades, as shown below:

to the team

and

making

trades

shows

within

admin form

when the

INVESTU — J—H-----

279

team is
selected.

o Prototype 7

L_;': & Welcome, Timmy. (TestTeam3400) | Sign Out

|ExPN.L

St |

Company Name

|EXPERIAN |
Price Wolatility

| 1668 |[198% |
Change

33 | |

BUY

Cumrent Balance:
|£56265.56 |

Price AMlers
| |

Create Alert

[] BUNZL - Bought 1664 FOR £34510.72 (2098 each)
[] EXPERIAN - Bought 529 FOR £8823.72 (1668 each)

Loading up the simulation on an admin account now displays the following, when the team

is selected:

gl Admin View

YOUR TEAMS

SELECTED TEAM DETAILS

(Al Test Team5400 - TT500 - 5626556
[]27 |GreentTeamd - FGBEE - 10000000

[]28 |KingKong - KK344 - 10000000

You are viewing the details of TestTeam5400 - Team Code: TT500
The team currently has £66266

The following are the members of this team:
Timmy

TestTeam5400 has the following open positions;
BMNZLL - 1664 - 2098 - 29/04/2018 19:3%:51
EXPM.L - 529 - 1668 - 29/04/2018 19:39:58

Note how Timmy is now listed under ‘members of this team:’ and the trades made on that

account also display below.

This indicates that the requirements set out in the test description have been met and the

test has therefore been passed.

INVESTU — J—H-----

280

Show that
teams with
duplicate
name or
code
cannot be
created.

prototyped

There was an error creating the new team. Your team name may already
be taken oryou have entered invalid information.

YOUR TEAMS SELECT
[]26 |TestTeam5400- TT500 - 10000000
[127 |GreentTeam4 - FGEEE - 10000000
| 128 |KingKong - KK24S - 10000000
|
x

CREATE NEW TEAM

gn Up Code

KK3d4

Your students can sign
up to this team using
the team code.

Starting Balance (E)

100000__

Create Mew Team

Trying to make a new team with the same name or code results in the above error. Note
how the details for the team in the ‘Create New Team’ area are the same as an already-
existing team. Therefore, the creation is rejected.

This indicates that the requirements set out in the test description have been met and the
test has therefore been passed.

INVESTU — J—H-----

281

Testing 1 — Investu Server Program — Development 3

Every sub-routine has been tested individually to ensure it works independently, however these tests

have not been shown. The tests displayed are tests that show multiple sub-routines and functions

working together to produce the desired outcome.

Many of the features of the simulation that haven’t been changed since Development 2 are not tested

here. To see the tests that are not displayed here, refer to Testing in Development 2, on page 149.

Show that the
database table
‘tbIStockDetails’ is
filled with up-to-
date information
upon clicking the
‘FillDB’ button.

The table ‘tblStockDetails’ is currently empty, as shown below:

] thiStockDetails

StockSymbc - StockMame - | Market Sector - Price ~| Change

* | 0 0

After loading the server program, the following display is presented:

B! Server

Latest Price Fetches ﬂﬂ

Stop

STOPPED

[] Show Emor
Display data

DB Path

Fil DB

Clicking the ‘FillDB’ button results in the following:

- | Click

INVESTU — J—H-----

282

Latest Price Fetches

Start

Stop
STOFPED

o' Open
[] Show Emaor
i « Development3 » Stod
Dizplay data
Organize = Mew folder

Prototyped £ Mame

7@ OneDrive [#] StockPriceFet
Attachments | | StockPriceFet
[#] StockPriceFet

Documents

| | StockPriceFet

SKIC Spreadsheet .
|Z| StockPriceFet

DB Path [This PC [WindowsApp
Fill DB) 2D Objects L_| WindowsApp
I Desktop [5] WindowsApp

1 ame [l n

A file finder appears. This appears to allow the user to select the stock symbol list.
Selecting the CSV file with the symbols in closes the file finder.

The database now appears as follows:

IAP.L ICAP
IHG.L INTERCONT HOTELS
IMI.L IMI PL]]

*

Search

Record: M (4501’45 E LI { Mo Filte

Note there are 46 entries, whereas the expected number is 100 (there are 100 stock
symbols in the FTSE100). This is because the process of fetching the information for all
100 stocks takes a long time. Upon refreshing the database, the following is show:

INVESTU — J—H----

283

WEIR.L WEIR GROUP :

WOS.L WOLSELEY (

WPP.L WPP i

WTB.L WHITBREAD ‘
* (
Record: M 100 of 100 H {% Mo Filter | Search

—

Note that there are now 100 entries. These entries, now that they have been created, will
be kept up to date by Invesu Server Program, as it will update the entries when it receives
new data, every time the timer ticks.

The view of the first 25 entries, from the top of the table, looks as follows:

i) tb|TradeHistory""l.__‘f| tb|TeamUsers"'-1.__='_=| thiUserinfo hflz:: thiTeams. 1 = tblstocmetaus
StockSymbce - StockMame ~ | Market Sector -~ Price | Change ~|[(
AALL AMNGLO AMERICAN 1699.2 32.2
ABF.L ASSQOCIAT BRIT FOODS 2700 15
ADM.L ADMIRAL GROUP 1995.5 20
ADN.L ABERDEEN ASSET MGMT 316.33 0
AGE.L AGGREKO 734.2 0.6
AMEC.L AMEC 0 0
ANTO.L AMTOFAGASTA 954 2.8
ARM.L ARM HOLDINGS 0 0
ASHM.L ASHMORE GRP 410 2.6
AV.L AVIVA 525 0.2
AZM.L ASTRAZEMECA 5083 91
BA.L BAE SYSTEMS 613.4 2.2
BARC.L BARCLAYS 208.69 -1.31
BATS.L BRIT AMER TOBACCO 4030.5 65
BG.L BG GROUFP 0 0
BLND.L BRIT LAND CO REIT 672 5.4
BLT.L BHP BILLITON 1534.6 -1.6
BMNZL.L BUNZL 2098 20
BF.L BP 537.4 2.1
BRBY.L BURBERRY GROUP 1822 54
BSY.L B SKY B GROUP 1] 1]
BT-A.L BT GROUP 248 2.55

‘Market Sector’ is an attribute that will have to be manually entered into the database.
That’s because there is no way to retrieve the market sector of a company using the
current method of querying Google Sheets. In a future development it’s possible that a
method could be found to automatically set this attribute and keep it updated.

This indicates that the requirements set out in the test description have been met and the
test has therefore been passed.

INVESTU — J—H----

284

Show that the
information in

‘tbIStockDetails’ is

kept up to date
every time the
timer ticks.

The following shows a screenshot of the table ‘tblStockDetails’, after the button ‘FillDB’ has

been pressed inside Investu Server Program:

=3 tblUserInfo"‘l] thiStockDetails

StockSymbc -

AALL
ABF.L
ADM.L
ADN.L
AGK.L
AMEC.L
ANTO.L
ARM.L
ASHM.L
AV.L
AZN.L
BA.L
BARC.L
BATS.L
BG.L
BLND.L
BLT.L
BNZL.L
BP.L
BREY.L
BSY.L
BT-A.L
ceLL
CNA.L
CPG.L
CPLL

StockName
ANGLO AMERICAN
ASS0CIAT BRIT FOODS
ADMIRAL GROUP

ABERDEEN ASSET MGMT

AGGREKO

AMEC
ANTOFAGASTA
ARM HOLDINGS
ASHMORE GRP
AVIVA
ASTRAZEMNECA
BAE SYSTEMS
BARCLAYS

BRIT AMER TOBACCO
BG GROUP

BRIT LAMD CO REIT
BHP BILLITON
BUNZL

BP

BURBERRY GROUP
B SKY B GROUP
BT GROUP
CARNIVAL
CENTRICA
COMPASS GROUP
CAPITA

Price

1708.6
2703
2011
316.33
735.6

959

412
5259.06
5097
615.4
208.1
4005

676.4
1535.4
2109
534.6
1814.5

250.35
4762

153.81
1557.5
186.45

+~ Change

9.4
3
15.5
0
1.4

2.35
30
0.96

-0.45

~ | Clickto A

Now, the server program is left to run for a few minutes. The result is shown in the
screenshot below:

INVESTU — J—H----

285

StockSymbc -~ |
. AALY
| |ABF.L
ADM.L
| |[ADN.LL
AGK.L
AMEC.L
| |ANTO.L
| |ARM.L
ASHM.L
AV.L
AZN.L
BA.L
| |BARC.L
| |BATS.L
BG.L
| |BLND.L
| |BLT.L
| [BNZLL
BP.L
| |BRBY.L
BSY.L
BT-A.L
| |ccLL
| |cnaL
CPG.L
| |cPIL

StockMName
ANGLO AMERICAN
ASSOCIAT BRIT FOODS
ADMIRAL GROUP
ABERDEEN ASSET MGMT
AGGREKO
AMEC
ANTOFAGASTA
ARM HOLDINGS
ASHMORE GRP
AVIVA
ASTRAZEMECA
BAE SYSTEMS
BARCLAYS
BRIT AMER TOBACCO
BG GROUP
BRIT LAND CO REIT
BHP BILLITON
BUNZL
BP
BURBERRY GROUP
B SKY B GROUP
BT GROUP
CARNIVAL
CENTRICA
COMPASS GROUP
CAPITA

| Market Sector -

Price

1712.6
2700
2003
316.33
735

0
955.6
0
411.6
528.2
5089
614.2
207.9
4009.36
0
674.2
1540
2107
535.1
1824

0
251.1
4763
153.95
1560
136.28

~ | Change

13.4
0

7.5

0

0.8

0

16

0

16
3.2

6

0.8
-1.05
-13.5

P
5.4

-2.3

3.1

11
5.5
-0.62

Note how the prices in the ‘Price’ attribute are virtually all different in comparison to the

screenshot taken only a few minutes earlier.

This proves that the table is updating autimatically, and so the data is being kept up to

date.

INVESTU — J—H-----

286

Show that the data = tb|TradeHistory""l.__‘j tb|TeamUsers"‘1.__j tb|User|nfd"'I-._‘j tblTeams""i 7 tbiStockDetails
inserted into StockSymbc - StockName Market Sector Price Change - ¢
“bIStockDetails’ is AALL ANGLO AMERICAN 1699.2 32.2
. . ABF.L ASSOCIAT BRIT FOODS 2700 15
displayed in the ADM.L ADMIRAL GROUP 1995.5 20
main simulation in ADN.L ABERDEEN ASSET MGMT 316.33 0
the stock details AGK.L AGGREKO 734.2 0.6
display area . AMEC.L AMEC 0 0
ANTO.L ANTOFAGASTA 354 2.3
ARM.L ARM HOLDINGS 0 0
ASHM.L ASHMORE GRP 410 2.6
AV.L AVIVA 525 0.2
AZN.L ASTRAZENECA 5083 31
BA.L BAE SYSTEMS 613.4 2.2
BARC.L BARCLAYS 202.63 -1.31
BATS.L BRIT AMER TOBACCO 4030.5 65
BG.L BG GROUP 0 0
BLND.L BRIT LAND CO REIT 672 5.4
BLT.L BHP BILLITON 1534.6 -1.6
BNZL.L BUNZL 2098 20
BP.L BP 537.4 2.1
BRBY.L BURBERRY GROUP 1822 54
BSY.L B SKY B GROUP 0 0
BT-A.L BT GROUP 242 2.55
The above screenshot shows the data in the table. This data is originally set by clicking
‘FillDB’, then kept up to date via the timer tick, which updates the relevant entry every time
new information is retrieved.
Loading the program and selecting the ‘Stock Details’ tab in the tab control shows the
following:

INVESTU — J—H----- 287

(]
=
©
c
® SRR
] o m
£ g8
c (N8) Ll
[<H] E | E
o Val g
24hr History Market News World News Trade History FTSE 100 Details Alerts w oD
! L= (=
Stock Symbol Price Change StockName Market Sector T ==
=
» [T 163520 32.20 ANGLO AMERIC... c
ABF L 2700.00 15.00 ASSOCIAT BRIT... = e | en
= Pl m
ADM L 1995 50 20.00 ADMIRAL GROLP g o
[' 3]
ADN.L 316.33 0.00 ABERDEEN ASS... S e 2
AGKL 734 20 0.60 AGGREKO @ B =
AMEC L 0.00 0.00 AMEC m w e |g
ANTO L 954,00 2.80 ANTOFAGASTA £ w
ARM L 0.00 0.00 ARM HOLDINGS 3 @ N
ASHM L 410.00 260 ASHMORE GRP @ m =
AVL 525.00 0.20 AVIVA 2 E 3
S :
AZN.L 5083.00 91.00 ASTRAZENECA £ 2 S
o =
BAL 513.40 220 BAE SYSTEMS = m 2 €
BARC.L 208.69 131 BARCLAYS g S 3 S
Y= - <
BATS.L 403050 65.00 BRIT AMER TO... 23 > g 8 =
= 0) I =
BG.L 0.00 0.00 BG GROUP g o O 4 4 s
= 0o e , & o [0
BLND.L 672.00 5.40 BRIT LAND CO ... 2 D 2 EE =
= = >
BLT.L 1534.60 -1.60 BHP BILLITON g £ 2 i E = 2
BNZL.L 2098.00 20,00 BUNZL T o o | & & Iz
oo EJT AN 210 oo ﬂu < ..m l_m_ mq_ =
z B 5 m s 2
- 2 I =
>
s 8
@
v & 9 8
c o O
== £
) .
g9 > c D
=3 7=
= Q9 X m mu
2f2S .08
"o dNHETD

288

INVESTU — J—H-----

Al

A
AAL.L
ABF.L
ADM.L
ADM.L
AGE.L

ol W k|

The second beginds with the symbol ‘CRH.L’

Clicking ‘Start’ in the program shows a file finder dialogue:

o5
IE Latest Price Fetches
1 85 Open
Stop
T <« Development3 »
STOPFED
Organize « Mew folder
[] Show Emor

~
Display daté Prototypel Mame

i Onelrive [®=] StockPri
Attachments | | StockPri
[#=] StockPri
Documents
| | StockPri
SKC Spreadsheet _
|2 SteckPri
[This PC 1 Window
_J 30 Objects || Window

We can navigate through the file directory to the two different CSV files. For the first run of
the program, the first CSV file is selected. The following is the result:

INVESTU — J—H----- 289

o/

Stop
RUNNING

] Show Emor
Dizplay data

Latest Price Fetches

Active Al

e AAL.L
1 ABF.L
2 ADM.L
3 ADN.L
4 AGK.L

169%9.2

27ea

1995.5
316.33

734.2

32.2
15
28

8.6

Note how the program begins from ‘AAL.L’ — the first symbol in the first CSV file.

The second run of the program uses the second CSV file:

ot Server

Stop
RUMNMING

[] Show Emor
Digplay data

Latest Price Fetches
2 CRH.L
1 C50G.L
2 DGE.L
3 EMG.L
4 ENRC.L

2571
a
2558

17B.78

e

15

55.5
2.88

Active Alerts
Aler
»
42

Note how the first symbol is now ‘CRH.L’, the same as in the second CSV file.

This indicates that the requirements set out in the test description have been met and the
test has therefore been passed.

Show that alerts
created by users
within the main
simulation are
loaded into the list
of alerts in the
server program.

H thm*-.._
AlertiD -
37
42
45
46

AccountlD -
44 BLT.L
44 BP.L
50 BRBY.L
50 IPR.L

StockSymbol

-

AlertPrice - TeamMame - UpOrDown - | C

1336 0
300 0
1300 0
405 0

up
DOWN
up
DOWN

The above screenshot shows the table ‘tblAlerts’. Loading the server program shows the

display below:

INVESTU — J—H-----

290

RUNNING

[] Show Emor
[] Display data

— O *
Latest Price Fetches Active Mlerts
2 AAL.L le33.2 3.2 AlertID AccountlD Stock Symbol AlertPrice TeamMamé UpOrDown
1 ABF.L 2788 15
2 ADM.L L 1995.5 28 2 44 BLT.L 1536 0 Up
3 ADN. L 316.33 e
2 AGK L 320 a6 42 44 BP.L 500 1] DOWN
5 AMEC.L a e 45 50 BREY.L 1900 1] P
I ANTO.L 954 2.8
7 ARM. L 2] e 46 50 IPR.L 405 0 DOWHN
E: ASHM. L 418 2.6
g AV.L 525 8.2
18 AZN.L S@E3 g1
11 BA.L E13.4 2.2
12 BARC.L 288.69 -1.31
13 BATS.L 4@38.5 B5
14 BGE.L -] -]
15 BLND. L E72 5.4
16 BLT.L 1534.6 -1.6
17 BNZL.L 2898 28
18 BF.L 537.4 2.1
19 BREY.L 1822 54
28 BSY.L -] -]
21 BT-A.L 248 2.55
22 CCL.L 4788.43 31.43
23 CHA.L 152,85 2.25

291

INVESTU — J—H-----

Note how all 4 of the alerts are displayed within the program. These alerts will then be
checked constantly until the conditions are met, at which point they will be executed, and
the alert deleted.

This indicates that the requirements set out in the test description have been met and the
test has therefore been passed.

Show that the list
of alerts is checked
regularly.

cmd . CommandText = "
SQLReply 0leD taReader = cmd.ExecuteReader
Record
Record. item pO) “up™ etStockPrice(Record. item

sendAlert(Record.item("ID"}, Record.item intID"), Record.item(" 1 Record. item("

Record. item() ! " GetStockPrice(Record. item(< Record.item(

SendAlert(Record.item("ID"}, Record.item("

ox("The a

This test requires an addition to the code. This addition is a message box, that will show
every time an alert is checked, but not executed due to not meeting the execution
conditions.

Immediately after loading the program, the following dialogue appears:

1653.2 3z.2 AlertiD AccourtlD Stock Symbal MertPrice
2728 15
1995.5 28 » 44 BLT.L 1536 0
316.33 8
) 234.2 8.6 42 44 BP.L 500 i}
L @ @ 45 50 BRBY.L 1500 0
.L 954 2.8
.]] 46 50 IPR.L 405 0
L 418 -
cac | StockPriceFetchStore x|
L 588

The alert was not found to have met its execution conditions, The alert
will not be sent.

This alert appears 4 times, once for each alert. Clicking ‘Ok’ on all 4 results in no boxes.
They reappear after about a minute — this is because alerts are checked every minute in
the program.

This indicates that the requirements set out in the test description have been met and the
test has therefore been passed.

Show that alerts
are executed and
users notified when

A number of alerts were created, as seen in the right hand display in the below screenshot.

INVESTU — J—H-----

292

the the alert price
is exceeded.

Active Alerts
~_ Alett|D AccourtlD Stock Symbol AlertPrice TeamMame UpOrDown
#h 51 BARC.L 209 0 up
45 51 IHG.L 4603 0 DOWN
5 51 CCLL 4770 0 DOWN
52 51 CCLL 4773 0 Up
53 51 BMZLL 2106 0 P
54 51 BMZLL 2104 0 DOWN
55 51 JMAT.L 3753 0 P
56 51 JMAT.L 3791 0 DOWN

Now that these alerts have been set, we wait for stock price changes. When the prices
exceed the alert prices, an alert will be sent.

INVESTU — J—H-----

293

BE Server

Start
Stop
RUNMING

[] Show Emor
[+] Display data

Latest Price Fetches

Active Alerts

AAL.L
ABF.L
ADML. L
ADN.L
AGK.L
AMEC.L
ANTO.L
ARM.L
ASHM. L
AV.L
AZN.L
BA.L
BARC.L
BATS.L
BG.L
BLND.L
BLT.L
BNZL.L
BP.L
BRBY.L
BSY.L

EeEe MBS U s W R @

e

959

e

411.4

529.2
Sage
614.8
287.9
4816.57
e
673.6
1548
2184.2
532
1828.5

. a
wn .
a

%]

o @@ W@

AlertID Account|D Stock Symbol AlertPrice

TeamMame

UpOrDown

51 BARC.L 209

Up

51 IHG.L 4603

DOWN

51 CCLL

51 cCLL

51 p: ram

51 BMZL.L

51 JMAT L

51 JMAT L

—=RE—N = =T~ = =]

StockPriceFetchStore

Alert sent for CCLL

294

INVESTU — J—H-----

After leaving the program a while, one of the alerts sends. Notice that the alert price in the
top right red circle is 4773. Then, notice the left hand red circle shows that the current price
has just changed to 4774. Because the alert is an ‘Up’ alert (The alert was set when the
actual price was below the alert price), the alert has triggered, hence the message box.

At the time of taking this screenshot, two alerts have triggered, and as such they are no
longer in the list of alerts within the program.

Active Alerts
'~_ Alert|D AccourtlD StockSymbal AlertPrice TeamMame UpOrDown

ﬁ 51 BARC.L 209 0 UP
45 51 [HG.L 4603 0 DOWN
51 5 CCLL 4770 0 DOWN
53 5 BMZL.L 2106 0 UP
54 5 BMZL.L 2104 0 DOWN
56 51 JMATL 3291 0 DOWN

®

Checking the Investu outlook account shows the following emails have been sent:

Sent Iltems Filter w
joehevZE gmail.com
Imvestu Alert &:45 AM

This iz an alegt for JOHMSOMN MATTHEY PLC. The sto...
joehewe gmail.com

[westu Alert add AM
This 15 an alert for CARMIVAL. The stock has reached ...

Visiting the email that is shown in the screenshot above, we see the following:

INVESTU — J—H----- 295

Inbox All v

Investu Mail
~ [nvestu Alert 09:45

Investu Mail
This is an alert for JOHNSON MATTHEY | 0945

Investu Mail
This is an alert for CARNIVAL. The stock | 0944

7 Mol N0

Clicking on one of the emails displays the following text:

Investu Alert

Investu Mail <Investullerts@outlook.com= EI‘I
09:45

To: joehewett1@gmail.com

This is an alert for JOHNSON MATTHEY PLC. The stock has reached the price of
£32.93 has been reached. Login to your Investu account to take further action.

INVESTU — J—H----- 296

Conclusl
on

Feedback #5 — Users - Investu — Development 3

For the final development of the program | wanted to contact some users and the client in order to gauge
their satisfaction with the final product. | gave 4 users from the clients class the program and went back a
week later to discuss their experience. The following is a recorded in-person conversation that was had,
with the users.

Me
“Can you give me an insight into your experiences over the last week of using Investu?”

Ben

“It's been good — I've been using it a little bit each day just checking how things are doing and I've made a
lot of progress. | got Mr B. to make us a team so I've been using it with my SIC group and it's been good
fun”

Me
“How is the trading going — have you had any success?”

Alex

“We've had a lot of success. We've found the news features in this last update really useful — if you don’t
have any idea about which stock to invest in it's great to just be able to check the professional’s opinion
easily within the program. We connected our school emails and so we’ve all been getting alerts
throughout the day, which has made it really easy to trade as you and can just wait until the perfect time
to buy or sell. It's simple really.”

Me
“How has the team dynamic worked out?”

Ollie

“Great — it was really simple to get together, we just asked Mr B. for the code and we were away. We
found the process really smooth — you can easily leave and join other teams. My team is doing try-outs
for our fourth position, as someone can’t make it for the next challenge, so we’ve been using that feature
to take people in then remove them and test other people. The notes system has been really good for that
too. It’s great to be able to see who’s making each trade and why — sometimes you forget the goal of a
trade or why you made it and so that’s good to be able to see.

Me
“Which positives are there of having Investu, in your opinion?”

Ben

“I think there’s a lot of positives — it's so easy to keep in the trading mindset outside of the SIC season.
You have to be on the ball when you're trading — constantly checking your positions and the market and
reading all the time to make sure you’re making good choices. It’s easy to fall out of the rhythm when you
don’t do it for a long time, so having Investu is going to be great for keeping in the mindset while we get
ready before and after. The fact Mr B. can see the progress of our account is great too — we’ve been

INVESTU — J—H----- 298

having a running conversation over the last few days about which trades we’ve made and he’s had some
good feedback.”

Me
“Any negatives or things that need improving?”

Alex

“I wouldn’t exactly call them negatives. the simulation does exactly what is needed. | think there are
things that could make the experience even better though. | think more analysis would be good. Maybe
the option to apply a list of models to the price data of a stock and see what they say? - there are some
models that take quantitative data and produce an output saying whether to buy or sell. | know you can
get those in Python. I'm not sure about Visual Basic. Why did you choose Visual Basic? | feel like Python
would be much more suited to this type of thing. Anyway, things like that would be really useful. Also, |
think the graph system could be expanded. The graphs show recent data which is great, but what if we
could see the data from as far back as possible? Being able to scrub through it and see trends would be
great. Then we could try and associate patterns to current events and predict things. I think it would just
give a broader picture of what’s going on.”

Me
“Thanks for the feedback.”

INVESTU — J—H----- 299

Feedback #6 — Client - Investu — Development 3

Me
“How has your experience been over the last week of using the simulation?”

Client

“It's been a lot of fun — the group and | have been using it on and off between lessons and such and it's
been really nice — it allows me to interact with them in a way that | haven’t been able to previously. | think
it's a resounding success.

Me
“What areas do you think Investu is strong in?”

Client

“Theres a lot of great things — it's simple and easy to use, the process of trading is very simple. The users
have been really active as well, which is nice to see. | think thats because they can use it in a team, which
creates a much more social and enjoyable experience. The fact that they can receive notifications on their
phones also keeps the idea of trading in their mind. I've been observing through my teachers account and
it's good to be able to see their though process and the progress they’re making.”

Me
“Do you feel as though all of these aims, that we discussed in our initial conversations, have been met?”

Client
“I think so. Investu is definitely what we need it to be and I'm happy with the result. It's easy to use, and
does everything | can remember asking for. | think the idea has been executed very well.”

Me
“What would you consider some of the weaker aspects of the simulation? What would you like to see
added in future versions?”

Client

“The simulation is very strong — but depending on how far you’d want to go into it theres lots that could be
done to further it. Making an app would be great, for example — would mean everyone could use it an any
point without the need for a computer. Things like analysis as well would be really good additions — the
teachers account would benefit a lot from statistics and analysis of the progress of the students. If | could
see a score board of all the teams in order of the highest balance, or most profit in a week and so on, |
think it could really add something.

Me
“Thanks for your help.”

INVESTU — J—H----- 300

Analysis of Feedback from Users

In general, the users seem satisfied with the state of the simulation. The users report using the features
provided to enhance their trading experience, and to effectively profit within the simulation. The users also
seems to find the simulation beneficial for their SIC preparation. The team system appears to be working
as intended.

The users report that more analysis would be beneficial to the experience. They also want more
functionality provided with the graph section.

Analysis of Feedback from Client

The client seems overall satisfied with the produced work. They particularly enjoy the interactive nature of
the simulation and the simplicity/ease of use. The client believes that the simulation specification stated in
the analysis has been effectively executed.

The client reports that additions to the admin mode feature allowing for team progress analysis would be
beneficial. The client thinks features such as a team leaderboard would be beneficial to the simulation.

INVESTU — J—H----- 301

Updated Feature List

Development 3 has successfully been implemented, with all of the features in the feature list implemented.
Testing was a success with a minimal amount of errors found. The following is the updated feature list,
with green, teal and pink representing features implemented in Development 1, 2 and 3 respectively.

Graph to show all time price changes of all stocks (inferred from user)

The only feature that has not been implemented is the historic graph. The user reported that the ability to
see the entire price history of a stock would be a useful tool to provide insight into price patterns over the
companies trading history. However, during development | was unable to find a data source to provide, in
most cases over a decade worth of stock data. Furthermore, if | was able to find this data source, plotting
the data into a graph would be impractical, as it would contain millions of data points over a period of up
to 20 years. One could argue that select data points every week or month could be selected and plotted,
but this would still require a large amount of processing power that is not practical on the school
computers.

For this reason, the graph to show the entire price history has been excluded from the program. Instead,
the user has access to an intra-day graph that shows data from the current trading day.

INVESTU — J—H----- 302

Analyising Objectives
At the beginning of the project, a series of objectives were described, derived from interviews with the

client and users, and research of stock market simulators that already exists. That list of objectives is
displayed below. The colour code represents the extent to which the objectives have been met.

Success?

Objective

Create an intuitive interface with easy-to-use controls

Ability to select stocks and view the price info within
a 30 second delay of real price

Visualization of price changes of current stock, and
ability to display historic price data

Ability for users to buy and sell stocks using a virtual
balance that is kept up to date.

Ability for users to trade on a private account or on a
team account

Ability for teacher to create teams and observe their
progress

Implementation of all secondary features stated in Every feature in the secondary feature list that
the feature list, such as a news feed, trade history, was created through feedback from client and
alerts system etc. user interviews, except one. That feature is the
historic graph, that was unable to be added as a
data source could not be found to provide data
from previous years. This is explained in the
previous section.

INVESTU — J—H----- 303

Changes for Future Developments

Development 3 puts Investu in a state that is acceptable for the client, and achieves the goal set out in
the analysis: create a real-time stock market investment simulator for students to practice trading in
preperation for the Student Investor Challenge.

However, there is definitely more that could be added to Investu to develop it further. Based on feedback
received from users and the client, the following are potential updates that may come in future
developments of Investu:

Improved analyitcal capabilities
Both the users and client mentioned that the analytical aspect of the simulation could be improved to help
them with their respective aims.

For the user, this would include analysis of both quantitative and qualititive data, both of their trading
progress and stock market data, to produce insightful and reliable results. For example, the analysis of
ability for users to analyse quantitative price data of certain stocks, and potentially extrapolate future price
changes. Combined with analysis of qualitative data such as market news relating to specific companies
in the FTSE100, this could provide the user useful tools to aid their trading experience. Furthermore,
analysis of user trading history could also be a beneficial addition. For example, the ability for users to
see a summary of their trading history with profit/loss displayed as a function of time, and the ability to
see ordered lists of most impactful/profitable trades and some form of analysis of these would definitely
aid the user in recognising trends regarding their trading history, and potentially aid them in improving the
effectiveness of their strategy.

For the client, improved analytical capabilities would entail the ability for the client to analyse the
guantitative data that results from the trades made by their teams. In theory, an active group of 10 or so
teams that use the simulation multiple times per day and make a significant number of trades over a
period of time, could provide a useful dataset that could be analysed, and show trends that could benefit
the students through improving their trading strategy. Furthermore, analysis of a number of attributes
relating to team trading such as ‘profit per week’ or ‘highest risk trade’ could lead to interesting learning
opportunities, in which the teacher, being able to see the leading and trailing teams in each area, could
provide useful insights to teams, such as advising teams which areas they are trailing in in relation to
other teams. This could also create an interesting competetive aspect to the simulation, in which users
could compete in certain categories, and the teacher could award prizes to the team at the top of the
leaderboard.

Improved Potential for Expansion of User Base

Currently, Investu is designed with the client in mind. In future, if this software proves to be successful in
its aim, then teachers may wish to share the simulation. This could be done a number of ways, however
the most interesting way would be via centralising the database and server program on a remote server,
instead of locally, and then connecting to the database/server via the internet.

This would be beneficial for a number of reasons, one of which would be the resulting dataset. Multiple
classes per school across multiple schools would produce a significant amount of data that could be

INVESTU — J—H----- 304

analysed, as well as creating scoreboards and competitions for teams. Another benefit would be
protecting the database. Currently, the database has to be stored on the local system, and in order for
users to access it on their simulation, it needs to be in a public area. This leaves the database vulnerable,
as it is easily accessible. Even if the database was in read-only mode and protected, the fact that it is
stored in the public file system is not ideal.

However, in order to do this, the program itself needs significant changes. One of these changes would
be an upgraded admin system, to allow for multiple admins to use the system simultaneously. Currently,
the only way to create an admin is to hard-code the credentials into the database. This would ofcourse
not be possible with a remote, encrypted database which was accessible to hundreds of students. The
program would therefore need to be updated to allow for the creation of admins, and a new attribute
would need to be added to the team table to show which admin created which team. This would then
allow for only the teams of each admin to display in the AdminView form.

A further change necessary would be in the connection to the database. The database is currently
connected to locally as it exists in the local file system. If the database was stored on a remote server,
then the connection for each query would need to be changed to account for that.

Further changes that would increase the possibility of one day having a larger, multi-school user base
would be an overhaul of the hard-coded values in the system. Currently, there are a lot of values that
have been written into the code that cannot be changed. Some of these include database file locations. In
order for the user base to expand successfully, as many of these hard-coded values as possible would
need to be changed so that they could be editted by the user or teacher.

Expanded Access to Indexes and Securities

Currently, the simulation is hard-coded to only process FTSE100 information. In future versions, it would
be beneficial to be able to trade on a range of different markets. The ability to trade on NASDAQ, S&P500,
FTSE250, Dow Jones Industrial Average and other indexes would theoretically not be too difficult, as it
would require a similar process as the FTSE100 that is already implemented. The difficult part would be
revamping the current code to accept other indexes, as almost all instances relating the list of symbols
has been hard-coded to 100, representing the 100 companies in the FTSE100. If this symbol list was
suddenly expanded to more than 100, then almost all aspects of the code would cease to function.

Securities are tradeable financial assets. Not all securities are stocks and shares. Securities can include
things like debt, equity, currencies, futures and options. The integration of these securities into Investu
would greatly increase the complexity of the simulation, closer to a real life trading experience. In the
future, this could be a good step for the simulation to take, as it would provide a lot of new content for
users to try, and increase the realism.

INVESTU — J—H----- 305

Appendix 1 —
Development
3 Code

MainForm

Imports System.IO

Imports System.Xml

Imports System.Windows.Forms.DataVisualization.Charting
Imports System.Data.OleDb

Public Class MainForm

Public AccessDatabaseConnection As String = "Provider=Microsoft.ACE.OLEDB.12.0;Data

Source=; Data Source=R:\Students\Computing ICT\Handin\Year13\StockInfoDB.mdb"

Public OpenPositions As New List(Of StockAttributes)
Public Symbols As New List(Of String)

Dim Seriesl As New Series
Dim LastValue As Decimal

Public AccountID As Integer
Public TeamMode As Boolean
Public TeamName As String
Public Balance As Decimal

Public ErrorMsg As String

Private Sub Forml_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.lLoad

AccountID = LoginForm.AccountID
TeamMode = LoginForm.TeamMode

If TeamMode = True Then
TeamName = LoginForm.TeamName

LoginLabel.Text = "Welcome, " & LoginForm.Username & ". (" & TeamName & ")"
ElseIf TeamMode = False Then

TeamName = "@"

LoginLabel.Text = "Welcome, " & LoginForm.Username & ""
End If

Balance = Math.Round(FetchBalance(), 2)
BalanceBox.Text = "£" & Math.Round((Balance / 100), 2)

FetchOpenPositions()
FetchWorldNews ()
FetchMarketNews ()
FetchTradeHistory()
LoadDetailsGrid()
FetchAlerts()
CreateChart()
GraphSettings()

GraphScaleComboBox.SelectedItem = "2"
PopulateSymbolArray("C:\Users\Joe\Documents\visual studio 2010\Investu

Writeup\Development 3\StockSymbols.csv")
For L = @ To Symbols.Count - 1

INVESTU — J—H-----

307

SelectStockComboBox.Items.Add(Symbols(L))
Next

End Sub

Public Sub PopulateSymbolArray(ByVal FilePath As String)
Dim CSVData() As String
Using SR As New StreamReader(FilePath)

While Not SR.EndOfStream
CSVData = SR.ReadlLine().Split(",")

If String.IsNullOrEmpty(CSVData(@)) Then
MsgBox("Error loading FTSE 100")
Else
Symbols.Add(CSVData(@).Trim)
End If

End While
End Using

End Sub
Sub FetchAlerts()
Dim QueryString As String

If TeamMode Then

QueryString = "SELECT * FROM tblAlerts WHERE TeamName='" & TeamName & "'"
Else
QueryString = "SELECT * FROM tblAlerts WHERE TeamName='@©' AND AccountID=" &
AccountID & ""
End If

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
cmd.CommandText = QueryString
Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

For Each Record In SQLReply
If TeamMode Then
AlertsIDListBox.Items.Add(Record.Item("AlertID"))
AlertsListBox.Items.Add(GetNameUsingID(Record.item("AccountID")) & " - "
& Record.item("StockSymbol") & " - " & Record.item("AlertPrice"))
Else
AlertsIDListBox.Items.Add(Record.Item("AlertID"))
AlertsListBox.Items.Add(Record.item("StockSymbol") & " - " &
Record.item("AlertPrice"))
End If

Next
ConnectionDb.Close()
End Sub

Sub DeleteAlert(ByVal AlertID As Integer)

INVESTU — J—H----- 308

&

MsgBox (AlertID)

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)

If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()
Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "DELETE * FROM tblAlerts WHERE AlertID=" & AlertID & ""
cmd . ExecuteNonQuery ()

ConnectionDb.Close()

End Sub

Function GetNameUsingID(ByVal AccountID)

Dim AccountName As String =

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT Username FROM tblUserInfo WHERE AccountID=" & AccountID

Dim SQLReply As OleDbDataReader = cmd.ExecuteReader
For Each Record In SQLReply
AccountName = Record.item("Username")

Next

ConnectionDb.Close()
Return AccountName

End Function

Private Sub Timerl_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles Timerl.Tick

Dim StockInfoString

Try
Timerl.Interval = 60000
StockInfoString = FetchStockDetailsString(SelectStockComboBox.SelectedItem)
NameBox.Text = SplitStockInfo(StockInfoString, "Name")
PriceBox.Text = SplitStockInfo(StockInfoString, "Price")
ChangeBox.Text = SplitStockInfo(StockInfoString, "Change")

Seriesl.Points.Clear()

Plot24hrData()

LoadDetailsGrid()

UpdatePortfolio()

GraphSettings()

VolatilityBox.Text = CalculateVolatility(PriceBox.Text, ChangeBox.Text) & "%"
Catch ex As Exception

MsgBox(ex.ToString())
End Try

End Sub

Sub FetchTradeHistory()

Dim MyConnection As OleDbConnection
Dim Adapter As OleDbDataAdapter

INVESTU — J—H----- 309

Dim DataSet As DataSet
Dim Tables As DataTableCollection
Dim Source As New BindingSource

MyConnection = New OleDbConnection
MyConnection.ConnectionString = AccessDatabaseConnection
DataSet = New DataSet

Tables = DataSet.Tables

If TeamMode Then
Adapter = New OleDbDataAdapter("SELECT * FROM tblTradeHistory WHERE

TeamName="'" & TeamName & "'", MyConnection)

Else
Adapter = New OleDbDataAdapter("SELECT * FROM tblTradeHistory WHERE

AccountID=" & AccountID & " AND TeamName='@'", MyConnection)

End

Sub

End

Function CalculateVolatility(ByVal Price As Decimal, ByVal Change As Decimal)

INVESTU —

End If

Adapter.Fill(DataSet, "[tblTradeHistory]")
Dim View As New DataView(Tables(9))
Source.DataSource = View
DataGridViewl.DataSource = View

DataGridViewl.Columns(@).Width = 50
DataGridViewl.Columns(1).Width = 50
DataGridViewl.Columns(2).Width = 50
DataGridViewl.Columns(3).Width = 75
DataGridViewl.Columns(4).Width = 75
DataGridViewl.Columns(5).Width = 125
DataGridViewl.Columns(6).Width = 50
DataGridViewl.Columns(7).Width = 50
DataGridViewl.Columns(8).Width = 890

Sub
LoadDetailsGrid()

Dim MyConnection As OleDbConnection
Dim Adapter As OleDbDataAdapter

Dim DataSet As DataSet

Dim Tables As DataTableCollection
Dim Source As New BindingSource

MyConnection = New OleDbConnection
MyConnection.ConnectionString = AccessDatabaseConnection
DataSet = New DataSet

Tables = DataSet.Tables

Adapter = New OleDbDataAdapter("SELECT * FROM [tblStockDetails]", MyConnection)

Adapter.Fill(DataSet, "tblStockDetails")
Dim View As New DataView(Tables(9))
Source.DataSource = view
StockDetailsGrid.DataSource = view

StockDetailsGrid.Columns(@).Width = 66
StockDetailsGrid.Columns(1).Width = 140
StockDetailsGrid.Columns(4).Width = 187

Sub

Dim Volatility As Decimal

J—H--

310

Price = Math.Abs(Price)
Change = Math.Abs(Change)

If Price <> @ And Change <> © Then
Volatility = (Change / Price) * 100
Volatility = Math.Round(Volatility, 2)

Else
Volatility

End If

0

Return Volatility
End Function
Function FetchBalance()
Dim CommandString As String

If TeamMode = True Then
CommandString = "SELECT Balance FROM tblTeams WHERE TeamName='" & TeamName &
Else
CommandString = "SELECT Balance FROM tblUserInfo WHERE AccountID=" &
AccountID & ""
End If

Using Connection As New OleDbConnection(AccessDatabaseConnection)

Dim Command As New OleDbCommand(CommandString, Connection)
Connection.Open()
Dim reader As OleDbDataReader = Command.ExecuteReader()

While reader.Read()
Balance = reader(®)
End While

reader.Close()
End Using

Return Balance
End Function

Sub FetchOpenPositions()

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

If TeamMode = True Then
cmd.CommandText = "SELECT StockSymbol, StockName, StockQuantity, BuyPrice,
AccountID, OpenPositionID, TradeDate FROM tblOpenPositions WHERE
tblOpenPositions.TeamName="" & TeamName & "'"
Else
cmd.CommandText = "SELECT StockSymbol, StockName, StockQuantity, BuyPrice,
AccountID, OpenPositionID, TradeDate FROM tblOpenPositions WHERE AccountID='" & AccountID
& "' AND TeamName='Q@'"

End If

INVESTU — J—H----- 311

Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

For Each Record In SQLReply
OpenPositions.Add(New StockAttributes With {.StockSymbol =
Record.item("StockSymbol"), .StockValue = Record.item("BuyPrice"), .StockQuantity =
Record.item("StockQuantity"), .OpenPositionID = Record.item("OpenPositionID"), .StockName
= Record.item("StockName"), .BuyDate = Record.item("TradeDate")})
UpdatePortfolio()

Next
ConnectionDb.Close()
End Sub
Function FetchStockDetailsString(ByVal StockSymbol As String)
Dim InformationString As String = ""
Dim Document As XmlDocument
Dim Nodelist As XmlNodelist
Dim Node As XmlNode
Document = New XmlDocument()
Document.Load("https://spreadsheets.google.com/feeds/1list/0AhySzEddwIC1dEtpWFOhQUhCWURZNE
ViUmpUeVgwdGc/1/public/basic?sq=symbol=" & StockSymbol)
Nodelist = Document.GetElementsByTagName("entry")
For Each Node In Nodelist
InformationString = Node.ChildNodes.Item(4).InnerText
Next
Return InformationString
End Function
Sub FetchMarketNews ()

WebBrowser2.DocumentText =
Dim stocknews As String = ""
Try
Dim document As XmlDocument
Dim DescriptionNodes As XmlNodelList
document = New XmlDocument()

document.Load("https://finance.google.com/finance/company_news?q=INDEXFTSE : UKX&ei=HynOWZC
IMpKKUunwl -gF&output=rss")

DescriptionNodes = document.GetElementsByTagName("description™)
For L = 1 To DescriptionNodes.Count - 1
stocknews += DescriptionNodes.Item(L).InnerText
MsgBox("")
Next
MsgBox("")

INVESTU — J—H----- 312

WebBrowser2.DocumentText = stocknews
Catch errorVariable As Exception

MsgBox(errorVariable.ToString())
End Try

End Sub

Sub FetchWorldNews()
WebBrowserl.DocumentText = ""
Dim StockNews As String = ""
Try
Dim document As XmlDocument
Dim TitleNodes, DescriptionNodes, LinkNodes, ArticleNodes As XmlNodelist

document = New XmlDocument()
document.Load("http://feeds.bbci.co.uk/news/world/rss.xml™)

TitleNodes = document.GetElementsByTagName("title")
DescriptionNodes = document.GetElementsByTagName("description™)
LinkNodes = document.GetElementsByTagName("1link")

ArticleNodes = document.GetElementsByTagName("pubDate")

For L = @ To 25
stocknews += "" & "" & TitleNodes.Item(L +
2).InnerText & " ” & "" & ""
stocknews += "" & ArticleNodes.Item(L).InnerText
& "" & "
"
stocknews += DescriptionNodes.Item(L + 1).InnerText & "
"
stocknews += "" & "Read more at " &
LinkNodes.Item(L + 2).InnerText & "" & "

"
Next

WebBrowserl.DocumentText += StockNews

Catch errorVariable As Exception
MsgBox(errorVariable.ToString())
End Try

End Sub

Function SplitStockInfo(ByVal StringToSplit As String, ByVal DetailsToExtract As
String)

Dim ExtractedDetails As String =

Dim ArrayList() As String = StringToSplit.Split(":")
Dim SubArrayList() As String = ArrayList(1).Split(",")
Dim SubArraylListl() As String = ArrayList(2).Split(",")

Select Case DetailsToExtract

Case "Name"
If Trim(SubArrayList(@)) = "#N/A" Then
ExtractedDetails = "ERROR"
Else
ExtractedDetails = Trim(SubArraylList(0))
End If

INVESTU — J—H----- 313

Case "Price"
If Trim(SubArrayList1(@)) = "#N/A" Then
ExtractedDetails = "@"
Else
ExtractedDetails = Trim(SubArraylList1(9))
End If

Case "Change"
If Trim(ArrayList(3)) = "#N/A" Then
ExtractedDetails = "0"
Else
ExtractedDetails = Trim(ArrayList(3))
End If

End Select

Return ExtractedDetails
End Function

Private Sub BuyButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles BuyButton.Click
If SelectStockComboBox.SelectedItem <> "" Then
If PriceBox.Text <> "@" Then
BuyForm.Show()

Else
MsgBox("You cannot buy this stock due to an error.")
End If
Else
MsgBox("Please select the stock you wish to buy, from the drop down menu
provided.")
End If
End Sub

Sub UpdatePortfolio()

Dim TotalTradePrice As Decimal
Dim CurrentTotalPrice As Decimal

OpenPositionsListBox.Items.Clear()
For 1 = @ To OpenPositions.Count - 1
TotalTradePrice = Math.Round(((OpenPositions(1l).Stockvalue *
OpenPositions(1l).StockQuantity) / 100), 2)
CurrentTotalPrice = Math.Round(((GetStockPrice(OpenPositions(1l).StockSymbol)
* OpenPositions(1l).StockQuantity) / 100), 2)
OpenPositionsListBox.Items.Add(OpenPositions(1l).StockName & " - Bought " &
OpenPositions(l).StockQuantity & " FOR £" & TotalTradePrice & " (" &
OpenPositions(1l).StockValue & " each)"” & vbNewLine)
Next
End Sub

Private Sub SelectStockComboBox_SelectedIndexChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles SelectStockComboBox.SelectedIndexChanged

Timerl.Start()

Seriesl.Points.Clear()

INVESTU — J—H----- 314

Timerl.Interval = 1
Plot24hrData()

End Sub
Public Sub Plot24hrData()

Dim Query As String = "SELECT FetchDate, StockPrice FROM tblStockPriceHistory
WHERE StockSymbol = '" & SelectStockComboBox.SelectedItem & "' ORDER BY FetchDate"

Using connection As New OleDbConnection(AccessDatabaseConnection)
Dim command As New OleDbCommand(Query, connection)

connection.Open()
Dim reader As OleDbDataReader = command.ExecuteReader()
While reader.Read()
If reader(®) >= DateTime.Today Then
PlotNewPoint((reader(®)).ToOADate(), reader(l))
LastValue = reader(1)
End If
End While
reader.Close()
End Using
End Sub
Sub PlotNewPoint(ByVal XValue As Decimal, ByVal YValue As Decimal)
Seriesl.Points.AddXY(XValue, YValue)
End Sub
Function GetStockChange(ByVal StockSymbol As String)
Dim StockChange As Decimal
Try
Dim document As XmlDocument
Dim nodelist As XmlNodelist
Dim node As XmlNode
document = New XmlDocument()
document.Load("https://spreadsheets.google.com/feeds/1ist/0AhySzEddwIC1dEtpWFOhQUhCWURZNE
ViUmpUeVgwdGc/1/public/basic?sq=symbol=" & StockSymbol)
nodelist = document.GetElementsByTagName("entry")

For Each node In nodelist
StockChange = SplitStockInfo(node.ChildNodes.Item(4).InnerText, "Change")

Next

Catch errorVariable As Exception
Timerl.Stop()

End Try

Return StockChange
End Function

INVESTU — J—H----- 315

Function GetStockPrice(ByVal StockSymbol As String)

Dim StockPrice As Decimal

Try

Dim document As XmlDocument

Dim nodelist As XmlNodelist

Dim node As XmlNode

document = New XmlDocument()
document.Load("https://spreadsheets.google.com/feeds/list/0AhySzEddwIC1dEtpWFOhQUhCWURZNE
ViUmpUeVgwdGec/1/public/basic?sq=symbol=" & StockSymbol)

nodelist = document.GetElementsByTagName("entry")

For Each node In nodelist
StockPrice = SplitStockInfo(node.ChildNodes.Item(4).InnerText, "Price")

Next

Catch errorVariable As Exception
Timerl.Stop()

End Try

Return StockPrice

End Function
Function GetStockName(ByVal StockSymbol As String)

Dim StockName As String = "Error"
Try
Dim document As XmlDocument
Dim nodelist As XmlNodelist
Dim node As XmlNode
document = New XmlDocument()
document.Load("https://spreadsheets.google.com/feeds/1list/0AhySzEddwIC1dEtpWFOhQUhCWURZNE
ViUmpUeVgwdGec/1/public/basic?sq=symbol=" & StockSymbol)
nodelist = document.GetElementsByTagName("entry")
For Each node In nodelist
StockName = SplitStockInfo(node.ChildNodes.Item(4).InnerText, "Name")
Next

Catch errorVariable As Exception
Timerl.Stop()

End Try
Return StockName
End Function

Private Sub ClosePositionsButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClosePositionsButton.Click

Try

INVESTU — J—H----- 316

Dim NewStockPrice As Decimal
Dim SelectedStock As String = OpenPositionsListBox.SelectedIndex

If OpenPositionsListBox.Items.Count > @ And
OpenPositionsListBox.CheckedItems.Count > @ Then

NewStockPrice)

NewStockPrice = GetStockPrice(OpenPositions(SelectedStock).StockSymbol)

Balance = Balance + (OpenPositions(SelectedStock).StockQuantity *

BalanceBox.Text = "£" & Math.Round((Balance / 100), 2)
Dim CommandString As String

If TeamMode Then
CommandString = "UPDATE tblTeams SET tblTeams.Balance=" & Balance & "

WHERE tblTeams.TeamName='" & TeamName & "';"

Else
CommandString = "UPDATE tblUserInfo SET tblUserInfo.Balance=" &

Balance & " WHERE (((tblUserInfo.AccountID)=" & AccountID & "));"

& OpenPositions(SelectedStock).OpenPositionID & "'

End If

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)

If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()
Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

StoreNewTrade (OpenPositions(SelectedStock).OpenPositionID, NewStockPrice)
cmd.CommandText = "DELETE * FROM tblOpenPositions WHERE OpenPositionID=""
cmd . ExecuteNonQuery ()

cmd.CommandText = CommandString

cmd . ExecuteNonQuery ()

ConnectionDb.Close()

OpenPositions.RemoveAt (OpenPositionsListBox.SelectedIndex)
UpdatePortfolio()

Else

MsgBox("Please select the position you'd like to close.")

End If

FetchTradeHistory()
Catch ex As Exception
MsgBox(ex.ToString())

End Try

End Sub

Private Sub Buttonl_Click(sender As System.Object, e As System.EventArgs) Handles
InfoButton.Click

Dim SelectedStock As String = OpenPositionsListBox.SelectedIndex

INVESTU — J—H-----

317

Dim Value As Decimal = OpenPositions(SelectedStock).StockValue

Dim StockName As String = OpenPositions(SelectedStock).StockName

Dim Quantity As String = OpenPositions(SelectedStock).StockQuantity
Dim StockSymbol As String = OpenPositions(SelectedStock).StockSymbol

Dim CurrentTotalPrice As Decimal = Math.Round(((GetStockPrice(StockSymbol) *
Quantity) / 1ee0), 2)
Dim TotalTradePrice As Decimal = Math.Round(((Value * Quantity) / 1ee0), 2)

MsgBox("You bought" & Quantity & " " & StockName & " shares for a price of " &
Value & " each, costing a total of £" & TotalTradePrice & ". " & vbNewlLine & StockName &
" shares are now worth " & GetStockPrice(StockSymbol) & " each, making your shares worth
a total of £" & CurrentTotalPrice & "." & vbNewlLine & "Your net gain from this trade is
£" & TotalTradePrice - CurrentTotalPrice & ".")
End Sub

Sub StoreNewTrade(ByVal OpenPositionID As String, ByVal CurrentPrice As Integer)

Dim InsertString As String =

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "SELECT StockSymbol, StockQuantity FROM tblOpenPositions WHERE
OpenPositionID="" & OpenPositionID & """

Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

For Each Record In SQLReply
InsertString = "INSERT INTO tblTradeHistory (AccountID, StockSymbol,
StockQuantity, BuyOrSell, TradePrice, TradeDate, TeamName) VALUES ('" & AccountID & "',""
& Record.item("StockSymbol") & "',"'" & Record.item("StockQuantity") & "','Sell’',"'" &
CurrentPrice & "','" & DateTime.Now & "','" & TeamName & "')"
Next

SQLReply.Close()

cmd.CommandText = InsertString
cmd. ExecuteNonQuery ()
ConnectionDb.Close()

End Sub

Private Sub CreateAlertButton_Click(sender As System.Object, e As System.EventArgs)
Handles CreateAlertButton.Click

Dim UpOrDown As String

If SelectStockComboBox.Text <> "Select Stock Symbol" Then
If AlertPriceBox.Text > PriceBox.Text Then
UpOrDown = "UP"
Else
UpOrDown = "DOWN"
End If

CreateNewAlert (UpOrDown)
AlertsListBox.Items.Clear()
AlertsIDListBox.Items.Clear()
FetchAlerts()

Else

INVESTU — J—H----- 318

MsgBox("You need to select a stock from the drop down menu first.")
End If

End Sub
Sub CreateNewAlert(ByVal UpOrDown As String)
If ValidateAlertPrice(AlertPriceBox.Text) Then

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "INSERT INTO tblAlerts (AccountID, StockSymbol, AlertPrice,
TeamName, UpOrDown) VALUES (" & AccountID & ",'" & SelectStockComboBox.SelectedItem &
"t,'" & AlertPriceBox.Text & "','" & TeamName & "','" & UpOrDown & "')"

cmd. ExecuteNonQuery ()

ConnectionDb.Close()

MsgBox("A new alert for " & NameBox.Text & " at " & AlertPriceBox.Text & "

has been set.")
Else
MsgBox("Please enter a valid alert price.")

End If
End Sub
Function ValidateAlertPrice(ByVal Price As String)

Dim Numbers As New System.Text.RegularExpressions.Regex("[0-9]")
Dim NotNumbers As New System.Text.RegularExpressions.Regex("[”0-9]")

If Len(Price) < 2 Then Return False
If NotNumbers.Matches(Price).Count > @ Then Return False

Return True
End Function

Private Sub LogoutButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles LogoutButton.Click

LoginForm.Show()
Me.Close()

End Sub

Private Sub GraphScaleComboBox_SelectedIndexChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles GraphScaleComboBox.SelectedIndexChanged
Timerl.Interval =1
End Sub

Private Sub OpenPositionsListBox_ItemCheck(ByVal sender As Object, ByVal e As
System.Windows.Forms.ItemCheckEventArgs) Handles OpenPositionsListBox.ItemCheck

If e.NewValue = CheckState.Checked Then
For i As Integer = @ To Me.OpenPositionsListBox.Items.Count - 1 Step 1
If i <> e.Index Then Me.OpenPositionsListBox.SetItemChecked(i, False)

Next

INVESTU — J—H----- 319

End If
End Sub

Sub CreateChart()

Seriesl.Name = SelectStockComboBox.SelectedItem
Seriesl.ChartType = SeriesChartType.Line
Seriesl.BorderWidth = 4
Chartl.Series.Add(Seriesl)
Chartl.Legends.Clear()

Seriesl.XValueType = ChartValueType.DateTime
Seriesl.BorderWidth = 2

End Sub

Sub GraphSettings()

Chartl.ChartAreas(9).AxisY.Minimum
Chartl.ChartAreas(0).AxisY.Maximum
Chartl.Update()

LastValue - Val(GraphScaleComboBox.Text)
LastValue + Val(GraphScaleComboBox.Text)

End Sub

Private Sub Timer2_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Timer2.Tick
GraphSettings()
Timer2.Interval = 5000

End Sub

Private Sub OpenToolStripButton_Click(sender As System.Object, e As System.EventArgs)
Handles OpenToolStripButton.Click

Dim TeamCode As String
TeamCode = InputBox("Please input the 5 character Team Code here, issued to you
by your teacher", "Join Team", "")

If ValidTeamCode(TeamCode) Then
If UserAlreadyInTeam(AccountID) Then
DeleteUserFromTeam(AccountID)
AddNewPlayerToTeam(AccountID, TeamCode)
Else
AddNewPlayerToTeam(AccountID, TeamCode)

End If
LoginForm.Show()
Me.Close()
Else
MsgBox(ErrorMsg)
End If
End Sub

Sub DeleteUserFromTeam(ByVal AccountID As Integer)

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

INVESTU — J—H----- 320

cmd.CommandText = "DELETE * FROM tblTeamUsers WHERE AccountID=" & AccountID & ""
cmd . ExecuteNonQuery ()

MsgBox("You have been removed from your current team.")
ConnectionDb.Close()
End Sub

Function UserAlreadyInTeam(ByVal AccountID As Integer)
Dim AlreadyInTeam As Boolean

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand
Dim SQLReply As OleDbDataReader

cmd = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT AccountID FROM tblTeamUsers WHERE AccountID=" &

AccountID & ""
SQLReply = cmd.ExecuteReader

For Each Record In SQLReply
AlreadyInTeam = True

Next

ConnectionDb.Close()

Return AlreadyInTeam
End Function

Function ValidTeamCode(ByVal TeamCode As String)
If CheckTeamCodeExists(TeamCode) Then

If EmptySpaceInTeam(TeamCode) Then
Return True

Else
ErrorMsg = "The team you are trying to join is already full."
End If
Else
ErrorMsg = "The Team Code you entered does not exist."
End If

Return False
End Function

Function CheckTeamCodeExists(ByVal TeamCode As String)

If TeamCode = "" Then
Return False
End If

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand
Dim SQLReply As OleDbDataReader

INVESTU — J—H----- 321

cmd = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT TeamCode FROM tblTeams™
SQLReply = cmd.ExecuteReader

For Each Record In SQLReply
If Record.item("TeamCode") = TeamCode Then

Return True
End If
Next
ConnectionDb.Close()

Return False
End Function

Function EmptySpaceInTeam(ByVal TeamCode As String)

Dim EmptySpace As Boolean = False
Dim TeamID As Integer
Dim UsersAlreadyInTeam As Integer = ©

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand
Dim SQLReply As OleDbDataReader

cmd = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT TeamID FROM tblTeams WHERE TeamCode='" & TeamCode & "'"
SQLReply = cmd.ExecuteReader

For Each Record In SQLReply
TeamID = Record.item("TeamID")
Next

cmd = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT * FROM tblTeamUsers WHERE TeamID=" & TeamID & ""
SQLReply = cmd.ExecuteReader
For Each Record In SQLReply
UsersAlreadyInTeam += 1
Next
If UsersAlreadyInTeam < 4 Then
EmptySpace = True
End If

ConnectionDb.Close()

Return EmptySpace
End Function

Sub AddNewPlayerToTeam(ByVal AccountID As Integer, ByVal TeamCode As String)

Dim TeamID As Integer
Dim TeamName As String =

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)

INVESTU — J—H----- 322

If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand
Dim SQLReply As OleDbDataReader

cmd = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT TeamID, TeamName FROM tblTeams WHERE TeamCode='" &
TeamCode & """

SQLReply = cmd.ExecuteReader

For Each Record In SQLReply
TeamID = Record.item("TeamID")
TeamName = Record.item("TeamName")
Next

SQLReply.Close()

cmd.CommandText = "INSERT INTO tblTeamUsers (AccountID, TeamID) VALUES (" &
AccountID & ",'" & TeamID & "")"

MsgBox("You have joined " & TeamName & "")
cmd. ExecuteNonQuery ()
ConnectionDb.Close()

End Sub

Private Sub Buttonl_Click_1(sender As Object, e As EventArgs) Handles Buttonl.Click
DeleteAlert(AlertsIDListBox.SelectedItem)
AlertsListBox.Items.Clear()
AlertsIDListBox.Items.Clear()
FetchAlerts()
End Sub
End Class

Public Class StockAttributes

Public StockSymbol As String
Public StockName As String
Public OpenPositionID As String
Public StockValue As Decimal
Public StockQuantity As Integer
Public BuyDate As DateTime

End Class

INVESTU — J—H----- 323

BuyForm

Imports

System.Data.0leDb

Public Class BuyForm

Dim
Dim
Dim
Dim
Dim
Dim
Dim

Dim

Quantity As Integer

StockPrice As Decimal = MainForm.PriceBox.Text

Stocksymbol As String = MainForm.SelectStockComboBox.SelectedItem
Stockname As String = MainForm.NameBox.Text

FinalPrice As Decimal

TeamMode As Boolean
TeamName As String

AccessDatabaseConnection As String = MainForm.AccessDatabaseConnection

Private Sub Form2_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles

End

MyBase.Load

Quantity =1
QuantityBox.Text = Quantity

FinalPrice = (StockPrice * Quantity)

PriceBox.Text = "£" & Math.Round((FinalPrice) / 100, 2)

TeamMode MainForm.TeamMode
TeamName = MainForm.TeamName

StockDisplayBox.Clear()
StockPriceBox.Clear()

StockDisplayBox.Text = Stockname
StockPriceBox.Text = StockPrice
Sub

Private Sub TrackBarl_Scroll(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles QuantitySlider.Scroll

End

QuantitySlider.Maximum = Int(MainForm.Balance / StockPrice)
Quantity = QuantitySlider.Value
QuantityBox.Text = Quantity

FinalPrice = 1.2 * (StockPrice * Quantity)
PriceBox.Text = "£" & Math.Round((FinalPrice) / 100, 2)

Sub

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles

INVESTU —

Buttonl.Click
If NotesBox.TextLength > 255 Then

MsgBox("Your note is too long.")
Else

J—H-—-- 324

For L = @ To MainForm.Symbols.Count - 1

If MainForm.Symbols(L) = MainForm.SelectStockComboBox.SelectedItem Then

If MainForm.Balance > (Quantity * StockPrice) Then
MainForm.OpenPositions.Add(New StockAttributes With {.StockSymbol
= MainForm.Symbols(L), .StockValue = StockPrice, .StockQuantity =
Quantity, .OpenPositionID = MainForm.AccountID & DateTime.Now, .BuyDate =
DateTime.Now, .StockName = Stockname})
StoreNewPosition(MainForm.AccountID, Stockname, Stocksymbol,
Quantity, StockPrice, DateTime.Now, TeamName, NotesBox.Text)
UpdateBalance(MainForm.AccountID)
MainForm.UpdatePortfolio()

Me.Close()
Else
MsgBox("You don't have enough money to buy that many " &
Stockname & " stocks.")
End If
End If
Next
MainForm.FetchTradeHistory()
End If
End Sub
Sub UpdateBalance(ByVal AccountID As Integer)

MainForm.Balance = MainForm.Balance - ((Quantity * StockPrice))
MainForm.BalanceBox.Text = "£" & Math.Round((MainForm.Balance / 100), 2)

Dim CommandString As String
If TeamMode Then
CommandString = "UPDATE tblTeams SET tblTeams.Balance=" & MainForm.Balance &

" WHERE tblTeams.TeamName='" & TeamName & "';"

Else
CommandString = "UPDATE tblUserInfo SET tblUserInfo.Balance=" &

MainForm.Balance & " WHERE (((tblUserInfo.AccountID)=" & AccountID & "));"
End If

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
cmd.CommandText = CommandString

cmd. ExecuteNonQuery ()
ConnectionDb.Close()
End Sub
Sub StoreNewPosition(ByVal ID As Integer, ByVal StockName As String, ByVval
StockSymbol As String, ByVal StockQuantity As Integer, ByVal StockValue As Decimal, ByVal
BuyDate As Date, ByVal TeamName As String, ByVal Notes As String)

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
cmd.CommandText = "INSERT INTO TblOpenPositions (AccountID, StockName,
StockSymbol, StockQuantity, BuyPrice, TradeDate, OpenPositionID, TeamName) VALUES ('" &

INVESTU — J—H----- 325

ID & "','" & StockName & "',"'" & StockSymbol & "','" & StockQuantity & "',"'" & StockValue
& "',"" & BuyDate & "','" & ID & BuyDate & "','" & TeamName & "')"

cmd. ExecuteNonQuery ()

cmd.CommandText = "INSERT INTO TblTradeHistory (AccountID, StockSymbol,
StockQuantity, BuyOrSell, TradePrice, TradeDate, TeamName, Notes) VALUES ('" & ID & "',""
& StockSymbol & "','" & StockQuantity & "', 'Buy','" & StockValue & "','" & BuyDate &
"t,'" & TeamName & "','" & Notes & "")"

cmd . ExecuteNonQuery ()
ConnectionDb.Close()
End Sub
End Class

INVESTU — J—H----- 326

SignUpForm

Imports System.Data.0OleDb
Public Class SignUpForm
Dim AccessDatabaseConnection As String = MainForm.AccessDatabaseConnection

Dim ErrorMsg As String
Dim EmptySlot As String

Private Sub SignUpButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CreateAccountButton.Click

If ProceedToSignUp() Then
CreateNewAccount(UsernameBox.Text, PasswordBox.Text, EmailBox.Text)

LoginForm.UsernameTextBox.Text = UsernameBox.Text
LoginForm.PasswordTextBox.Text = PasswordBox.Text

MsgBox("Your account has been created! Click login to proceed.™)

Me.Close()
End If

End Sub

Sub CreateNewAccount(ByVal Username As String, ByVal Password As String, ByVal Email

As String)

10000000

Dim Balance As Integer

Dim TeamName As String =

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand
cmd = ConnectionDb.CreateCommand

cmd.CommandText = "INSERT INTO tblUserInfo (Username, Balance, Passwrd) VALUES
('" & Username & "','" & Balance & "','" & Password & "')"

cmd. ExecuteNonQuery ()
ConnectionDb.Close()
End Sub
Function ProceedToSignUp()
If ValidatePassword(PasswordBox.Text) Then
If ValidUsername(UsernameBox.Text) Then
If ValidEmail(EmailBox.Text) Then
Return True
Else

MsgBox("The email you have entered is invalid")
End If

INVESTU — J—H-----

327

Else
MsgBox("The username you have entered is already taken.™)
End If
Else
MsgBox("Invalid Password - Passwords must have at least 1 upper case
character, 1 number and 8 total characters.")
End If

Return False
End Function

Function ValidUsername(ByVal NewUsername As String)

If UsernameBox.Text = "" Or PasswordBox.Text = "" Then
ErrorMsg = "The Username and Password are required fields."
Return False

Else

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand
Dim SQLReply As OleDbDataReader

cmd = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT Username FROM tblUserInfo"
SQLReply = cmd.ExecuteReader

For Each Record In SQLReply

If Record.item("Username") = NewUsername Then
Return False
End If
Next

ConnectionDb.Close()

End If
Return True
End Function

Function ValidatePassword(ByVal Password As String, Optional ByVal MinLength As
Integer = 8, Optional ByVal NumUpper As Integer = 1, Optional ByVal NumLower As Integer =
1, Optional ByVal NumNumbers As Integer = 1, Optional ByVal NumSpecial As Integer = 9) As
Boolean

Dim UpperCase As New System.Text.RegularExpressions.Regex("\p{Lu}")
Dim LowerCase As New System.Text.RegularExpressions.Regex("[a-z]")
Dim Numbers As New System.Text.RegularExpressions.Regex("[0-9]")

Dim Specials As New System.Text.RegularExpressions.Regex("[~a-zA-Z0-9]")

If Len(Password) < MinLength Then Return False

If UpperCase.Matches(Password).Count < NumUpper Then Return False
If LowerCase.Matches(Password).Count < NumLower Then Return False
If Numbers.Matches(Password).Count < NumNumbers Then Return False
If Specials.Matches(Password).Count < NumSpecial Then Return False

Return True

INVESTU — J—H----- 328

End Function

Function ValidEmail(ByVal Email As String)
Dim Valid As Boolean = False

If Email = "" Then
Valid = True
Else
Valid = True
End If

Return Valid

End Function

End Class

INVESTU — J—H----- 329

AdminViewForm

Imports System.Data.0OleDb
Public Class AdminView

Dim AccessDatabaseConnection As String = MainForm.AccessDatabaseConnection

Private Sub AdminView_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.lLoad
FetchTeams()
End Sub

Sub FetchTeams()

Dim TeamID As Integer
Dim TeamInfo As String

TeamInfoCheckedListbox.Items.Clear()
TeamIdCheckedListBox.Items.Clear()

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)

If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "SELECT TeamID, TeamName, Balance, TeamCode FROM tblTeams"

Dim SQLReply As OleDbDataReader = cmd.ExecuteReader
For Each Record In SQLReply

TeamID = Record.item("TeamID")
TeamIdCheckedListBox.Items.Add(TeamID)

TeamInfo = Record.item("TeamName") & " - " & Record.Item("TeamCode") & " -

& Record.item("Balance")
TeamInfoCheckedListbox.Items.Add(TeamInfo)
Next

ConnectionDb.Close()
End Sub

Function ValidateInputs(ByVal NewTeamName As String, ByVal NewTeamCode As String)

Dim ValidTeamInfo As Boolean = True

If TeamNameBox.Text = "" Or TeamCodeBox.Text = "" Or BalanceBox.Text = "" Then

ValidTeamInfo = False
Else

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT TeamName, TeamCode FROM tblTeams™

Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

INVESTU — J—H-----

330

For Each Record In SQLReply

If Record.item("TeamName") = NewTeamName Or Record.item("TeamCode") =
NewTeamCode Then
ValidTeamInfo = False
End If
Next

End If
Return ValidTeamInfo
End Function

Sub CreateNewTeam(ByVal NewTeamName As String, ByVal NewTeamCode As String)
Dim Balance As Integer = BalanceBox.Text * 100

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "INSERT INTO tblTeams (TeamName, TeamCode, Balance) VALUES ('"
& NewTeamName & "','" & NewTeamCode & "','" & Balance & "')"
cmd. ExecuteNonQuery ()

ConnectionDb.Close()

"

MsgBox("A new team with the name " & NewTeamName & " and team code " &

NewTeamCode & " has been created.")
FetchTeams()
End Sub

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Buttonl.Click
If ValidateInputs(TeamNameBox.Text, TeamCodeBox.Text) Then
CreateNewTeam(TeamNameBox.Text, TeamCodeBox.Text)
Else
MsgBox("There was an error creating the new team. Your team name may already
be taken or you have entered invalid information.")
End If
End Sub

Private Sub TeamIdCheckedListBox_ItemCheck(ByVal sender As Object, ByVal box As
System.Windows.Forms.ItemCheckEventArgs) Handles TeamIdCheckedListBox.ItemCheck

If box.NewValue = CheckState.Checked Then
For index = @ To TeamIdCheckedListBox.Items.Count - 1

If index <> box.Index Then
Me.TeamIdCheckedListBox.SetItemChecked(index, False)
Me.TeamInfoCheckedListbox.SetItemChecked(index, False)

Else
TeamInfoCheckedListbox.SetItemChecked(index, True)

End If

Next
End If
End Sub

INVESTU — J—H----- 331

Sub FetchTeamInfo()

TeamDetailsListBox.Items.Clear()
Dim TeamID As Integer = TeamIdCheckedListBox.Text

Dim Balance As Integer
Dim TeamName As String =

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand
Dim SQLReply As OleDbDataReader

cmd = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT * FROM tblTeams WHERE TeamID=" & TeamID & ""

SQLReply = cmd.ExecuteReader
For Each Record In SQLReply

TeamName = Record.item("TeamName™)
Balance = Record.item("Balance") / 100

TeamDetailsListBox.Items.Add("You are viewing the details of " &

Record.item("TeamName") & " - Team Code: " & Record.Item("TeamCode"))

TeamDetailsListBox.Items.Add("The team currently has £" & Balance)
TeamDetailsListBox.Items.Add("")
TeamDetailsListBox.Items.Add("The following are the members of this team:")

FetchUsersInTeam(TeamID)
Next

TeamDetailsListBox.Items.Add("")
TeamDetailsListBox.Items.Add(TeamName & " has the following open positions;")

cmd = ConnectionDb.CreateCommand

cmd.CommandText = "SELECT * FROM tblOpenPositions WHERE TeamName='" & TeamName &

SQLReply = cmd.ExecuteReader

For Each Record In SQLReply

TeamDetailslListBox.Items.Add(Record.item("StockSymbol") & " - " &
Record.item("StockQuantity") & " - " & Record.item("BuyPrice") & " - " &
Record.item("TradeDate"))

Next
End Sub

Sub FetchUsersInTeam(ByVal TeamID As Integer)

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand
Dim SQLReply As OleDbDataReader

INVESTU — J—H----- 332

cmd = ConnectionDb.CreateCommand

cmd.CommandText = "SELECT tblUserInfo.Username FROM tblUserInfo, tblTeamUsers,
tblTeams WHERE tblTeams.TeamID=" & TeamID & " AND tblTeamUsers.TeamID = tblTeams.TeamID
AND tblTeamUsers.AccountID = tblUserInfo.AccountID"

SQLReply = cmd.ExecuteReader
For Each Record In SQLReply
TeamDetailsListBox.Items.Add(Record.item("Username"))
Next
End Sub

Function FetchMemberInfo(ByVal UserID As Integer)
Dim MemberInfoString As String = ""

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT Username, Passwrd, AccountID FROM tblUserInfo WHERE
AccountID=" & UserID & ""
Dim SQLReply As OleDbDataReader = cmd.ExecuteReader
For Each Record In SQLReply
MemberInfoString += "Username: " & Record.Item("Username") & "

MemberInfoString += "Password: " & Record.item("Passwrd")
Next

Return MemberInfoString
End Function
Private Sub TeamIdCheckedListBox_SelectedIndexChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles TeamIdCheckedListBox.SelectedIndexChanged

FetchTeamInfo()
End Sub

Private Sub TeamInfoCheckedListbox_SelectedIndexChanged(sender As System.Object, e As
System.EventArgs) Handles TeamInfoCheckedListbox.SelectedIndexChanged

End Sub
End Class

INVESTU — J—H----- 333

LoginForm

Imports System.Data.0OleDb
Public Class LoginForm
Dim AccessDatabaseConnection As String = MainForm.AccessDatabaseConnection

Public AccountID As Integer

Public Admin As Boolean

Public TeamName As String

Public TeamMode As Boolean = False
Public Username As String

Private Sub OK_Click(sender As System.Object, e As System.EventArgs) Handles OK.Click
Username = UsernameTextBox.Text

If ValidUserLogin(Username, PasswordTextBox.Text) Then
LoadUserInfo(AccountID)

If Admin = True Then

AdminView.Show()
Me.Close()

Else
If TeamModeCheckBox.Checked Then

If TeamName = "" Then
MsgBox("You don't have a team! You will be loaded into single
user mode.")
Else
TeamMode = True
End If
End If

MainForm.Show()
Me.Close()
End If
Else
MsgBox("Invalid Username or Password.™)
End If
End Sub

Function ValidUserLogin(ByVal Username As String, ByVal Password As String)
Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()
Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
cmd.CommandText = "SELECT AccountID FROM tblUserInfo WHERE Username='" & Username

& "' AND Passwrd='" & Password & "'"

Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

INVESTU — J—H----- 334

For Each Record In SQLReply
AccountID = Record.item("AccountID")
Return True
Next
ConnectionDb.Close()
Return False
End Function

Sub LoadUserInfo(ByVal AccountID As Integer)

Dim UserValid As Boolean = False
TeamName = ""

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "SELECT tblTeams.TeamName FROM tblTeams, tblTeamUsers,
tblUserInfo WHERE tblTeams.TeamID = tblTeamUsers.TeamID AND tblTeamUsers.AccountID =
tblUserInfo.AccountID AND tblUserInfo.AccountID=" & AccountID & ""

Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

For Each Record In SQLReply

TeamName = Record.item("TeamName™)

Next
SQLReply.Close()

cmd.CommandText = "SELECT Admin FROM tblUserInfo WHERE AccountID=" & AccountID &

Dim SQLReplyl As OleDbDataReader = cmd.ExecuteReader

For Each Record In SQLReplyl
Admin = Record.item("Admin")

Next

ConnectionDb.Close()
End Sub

Private Sub Cancel_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Cancel.Click
Me.Close()
End Sub

Private Sub Timerl Tick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Me.Close()
End Sub

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles Buttonl.Click
SignUpForm.Show()

INVESTU — J—H----- 335

End Sub

End Class

INVESTU — J—H----- 336

Bibliography

i https://www.Iseg.com/markets-products-and-services/our-markets/london-stock-exchange/derivatives-
markets/equity-index-derivatives/ftse-100

i auth. Biello David // Scientific American. - https://www.scientificamerican.com/article/can-math-beat-
financial-markets/.

i https://www.investopedia.com/dictionary/.

v https://www.online-sciences.com/programming/visual-basics-programming-language-advantages-and-
disadvantages/

v Automatic database normalization and primary key generation [Journal] / auth. Bahmani Amir
Hassan, Naghibzadeh Mahmoud and Bahmani Behnam

vi hitps://msdn.microsoft.com/en-us/library/system.xml.xmldocument(v=vs.110).aspx

vi https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/populating-a-dataset-from-a-
dataadapter

INVESTU — J—H----- 337

https://www.lseg.com/markets-products-and-services/our-markets/london-stock-exchange/derivatives-markets/equity-index-derivatives/ftse-100
https://www.lseg.com/markets-products-and-services/our-markets/london-stock-exchange/derivatives-markets/equity-index-derivatives/ftse-100
https://www.investopedia.com/dictionary/
https://msdn.microsoft.com/en-us/library/system.xml.xmldocument(v=vs.110).aspx
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/populating-a-dataset-from-a-dataadapter
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/populating-a-dataset-from-a-dataadapter

