
INVESTU – J—H----- 1

Investu
A real-time stock market investment simulator for
students

J-- H-----

INVESTU – J—H----- 2

Table of Contents

Analysis .. 10

Background and Problem Identification ...11

Summary of the Identified Problem .. 11

Background and Explanation ... 11

How the Stock Market Functions ...12

Terminology...13

Interview with client ...15

Interview with users ...16

Description of the current system ..17

Feature List ...19

Feedback #1 - Client ...20

Feature List Updates .. 20

Objectives ...21

Potential Solutions ...22

Advantages of Visual Basic ... 23

Limitations of Visual Basic ... 23

General Limitations for the Project ... 23

Data sources and destinations ..24

Data Input by User1 ... 25

Data Input by User2 ... 26

Data Retrieved from Database .. 26

Data Retrieved from the Internet .. 27

Data volumes ..31

Volumes of Data Input by User .. 31

Volumes of Data Retrieved by Program .. 31

Proposed solution ..33

Flowchart for Proposed Solution .. 33

Design .. 34

General Plan ...35

System Design ..36

Data Flow ... 37

Form Layout Designs ... 39

Database Design ...43

INVESTU – J—H----- 3

Tables... 44

Entity Relationship Diagram ... 44

Tables - Breakdown ... 45

SQL Queries .. 48

Pseudo Code for Forms ..51

Login Form – Pseudo Code ... 51

AdminViewForm – Pseudo Code ... 52

SignUpForm – Pseudo Code ... 53

MainForm – Pseudo Code ... 54

BuyForm – Pseudo Code ... 55

Development 1 ... 56

MainForm – Investu - Development 1 ..57

Global Variables – MainForm - Investu Development 1 .. 57

MainForm_Load – MainForm - Investu Development 1 .. 59

CreateChart – MainForm - Investu Development 1 ... 60

Timer1_Tick – MainForm - Investu Development 1 ... 60

Development of the sub-routine FetchStockInfo - MainForm -

Investu Development 1 .. 62

 FetchStockInfo – MainForm - Investu Development 1 .. 64

SplitStockInfo – MainForm - Investu Development 1 ... 66

PlotNewPoint – MainForm - Investu Development 1 ... 69

ClosePositionsButton – MainForm - Investu Development 1 .. 69

UpdatePortfolio – MainForm - Investu Development 1 .. 72

UpdateBalance – MainForm - Investu Development 1 .. 73

BuyForm - Investu Development 1 ..74

Global Variables – BuyForm - Investu Development 1 .. 74

 BuyForm_Load – BuyForm - Investu Development 1 ... 75

TrackBar_Scroll – BuyForm - Investu Development 1 ... 76

BuyButton_Click – BuyForm - Investu Development 1 .. 77

Testing 1 - Investu Simulation – Development 1 ..79

Testing 1 Findings – Investu Simulation - Development
1 ..93

Fixing Errors - Investu Development 1 ...94

Error 1 .. 94

Error 2 .. 96

Testing 2 - Investu Development 1 ..97

INVESTU – J—H----- 4

Feedback #3 – Client – Investu Development 1 ... 100

Final Conclusion – Investu Development 1 .. 101

Development 2 ... 102

Database – InvestuServerProgram - Development 2 ... 103

Investu Server Program – Version 1 – Development 2 .. 104

Imports/Namespaces – InvestuServerProgram -

Development 2 ... 104

Global Variables – InvestuServerProgram - Development 2 ... 105

MainForm_Load – InvestuServerProgram - Development 2 ... 106

PopulateSymbolArray – InvestuServerProgram -

Development 2 ... 106

StartButton_Click – InvestuServerProgram - Development 2 .. 108

Timer1_Tick – InvestuServerProgram - Development 2 .. 109

FetchLatestStockInfo – InvestuServerProgram -

Development 2 ... 110

FormatString – InvestuServerProgram - Development 2 ... 112

UpdateDatabase – InvestuServerProgram - Development 2 .. 113

SplitStockInfo – InvestuServerProgram - Development 2 ... 114

GetStockChange – MainForm - InvestuServerProgram -

Development 2 ... 115

GetStockName – MainForm - InvestuServerProgram -

Development 2 ... 116

GetStockPrice – MainForm - InvestuServerProgram -

Development 2 ... 117

StoreCrashInfo – MainForm - InvestuServerProgram -

Development 2 ... 118

Investu Simulation – Development 2 ... 119

Database 2 – Investu – Development 2 ... 120

SignUpForm – Investu - Development 2 .. 121

Global Variables – SignUpForm – Investu Development 2 ... 121

SignUpButton_Click – SignUpForm - Investu Development 2 .. 121

ProceedToSignUp – SignUpForm - Investu Development 2 ... 123

ValidUsername – SignUpForm - Investu Development 2 .. 124

ValidatePassword - SignUpForm – Investu Development 2 .. 126

 CreateNewAccount – SignUpForm – Investu Development 2 .. 127

LoginForm – Investu - Development 2 ... 128

Global Variables - LoginForm – Investu Development 2 ... 128

Login_Click - LoginForm – Investu Development 2 ... 129

INVESTU – J—H----- 5

ValidUserLogin - LoginForm – Investu Development 2 ... 130

LoadUserInfo - LoginForm – Investu Development 2 .. 131

MainForm – Investu - Development 2 .. 132

Imports/Namespaces– MainForm – Investu Development 2 ... 132

Global Variables – MainForm – Investu Development 2 ... 132

MainForm_Load – MainForm – Investu Development 2 .. 134

PopulateSymbolArray– MainForm – Investu Development 2 .. 135

Timer1_Tick – MainForm – Investu Development 2 .. 136

CalculateVolatility – MainForm – Investu Development 2 ... 137

FetchBalance – MainForm – Version 2 .. 137

FetchOpenPositions – MainForm – Investu Development 2 ... 138

FetchStockDetailsString – MainForm – Investu Development

2 ... 140

SplitStockInfo – MainForm – Investu Development 2 .. 140

BuyButton_Click – MainForm – Investu Development 2 ... 140

UpdatePortolio – MainForm – Investu Development 2 .. 141

SelectStockComboBox_SelectedIndexChanged – MainForm

– Investu Development 2 ... 142

Plot24hrData – MainForm – Investu Development 2 ... 142

PlotNewPoint – MainForm – Investu Development 2 .. 143

GetStockPrice – MainForm – Investu Development 2 ... 143

GetStockChange – MainForm – Investu Development 2 .. 143

GetStockName – MainForm – Investu Development 2 ... 144

ClosePositionbutton_Click – MainForm – Investu

Development 2 ... 144

LogoutButton_Click – MainForm – Investu Development 2 ... 147

GraphScaleComboBox_SelectedIndexChanged – MainForm

– Investu Development 2 ... 147

OpenPositionsListBox_ItemCheck – MainForm – Investu

Development 2 ... 147

CreateChart() – MainForm – Investu Development 2 .. 148

GraphSettings()_SelectedIndexChanged – MainForm –

Investu Development 2 .. 148

Testing 1 - Investu Server Program – Development 2 ... 149

Testing 1 – Investu Simulation – Development 2 ... 163

SignUpForm Testing 1 ... 163

LoginForm Testing 1 .. 170

INVESTU – J—H----- 6

MainForm Testing 1 ... 180

Testing Findings - Investu Development 2 ... 189

Fixing Errors - Investu Development 2 ... 190

Testing 2 - Investu Development 2 .. 191

Feedback #4 – Client – Investu Development 2 ... 192

Final Conclusion – Investu Development 2 .. 193

Development 3 ... 194

Database 3 – Investu – Development 3 ... 195

AdminView - Investu – Development 3 .. 196

AdminView_Load – AdminView – Investu Development 3 .. 196

FetchTeams – AdminView – Investu Development 3 .. 196

AdminView_Load – AdminView – Investu Development 3 .. 198

AdminView_Load – AdminView – Investu Development 3 .. 199

CreateNewTeam – AdminView – Investu Development 3 ... 201

TeamIDCheckedListBox_ItemCheck – AdminView – Investu

Development 3 ... 203

FetchTeamInfo – AdminView – Investu Development 3 .. 204

FetchUsersInTeam – AdminView – Investu Development 3 ... 207

MainForm - Investu – Development 3 .. 208

MainForm_Load – MainForm – Investu Development 3 .. 208

PopulateSymbolArray – MainForm – Investu Development 3 ... 209

FetchAlerts – MainForm – Investu Development 3 .. 209

Timer1_Tick – MainForm – Investu Development 3 .. 211

FetchTradeHistory – MainForm – Investu Development 3 .. 212

LoadDetailsGrid – MainForm – Investu Development 3 .. 214

CalculateVolatility – MainForm – Investu Development 3 ... 215

FetchBalance – MainForm – Investu Development 3 .. 215

FetchStockDetailsString – MainForm – Investu Development

3 ... 215

FetchMarketNews – MainForm – Investu Development 3 ... 216

FetchWorldNews – MainForm – Investu Development 3 .. 218

SplitStockInfo – MainForm – Investu Development 3 .. 219

BuyButton_Click – MainForm – Investu Development 3 ... 220

SelectStockComboBox_SelectedIndexChang – MainForm –

Investu Development 3 .. 220

Plot24hrData – MainForm – Investu Development 3 ... 220

PlotNewPoint – MainForm – Investu Development 3 .. 220

INVESTU – J—H----- 7

GetStockChange – MainForm – Investu Development 3 .. 220

GetStockPrice – MainForm – Investu Development 3 ... 220

GetStockName – MainForm – Investu Development 3 ... 221

ClosePositionsButton_Click – MainForm – Investu

Development 3 ... 221

InfoButton_Click – MainForm – Investu Development 3 .. 221

StoreNewTrade_Click – MainForm – Investu Development 3 ... 222

CreateAlertButton_Click – MainForm – Investu Development

3 ... 224

CreateNewAlert – MainForm – Investu Development 3 .. 226

ValidateAlertPrice – MainForm – Investu Development 3 ... 227

OpenToolStripButton_Click – MainForm – Investu

Development 3 ... 227

DeleteUserFromTeam – MainForm – Investu Development 3 .. 229

UserAlreadyInteam – MainForm – Investu Development 3 ... 230

ValidTeamCode – MainForm – Investu Development 3 .. 231

CheckTeamCodeExists – MainForm – Investu Development

3 ... 232

EmptySpaceInTeam – MainForm – Investu Development 3 ... 233

AddNewPlayToTeam – MainForm – Investu Development 3 .. 235

BuyForm - Investu – Development 3 ... 237

Global Variables – BuyForm – Investu Development 3 ... 237

BuyForm_Load – BuyForm – Investu Development 3 ... 237

QuantitySlider_Scroll– BuyForm – Investu Development 3 ... 237

BuyButton_Click – BuyForm – Investu Development 3 ... 238

UpdateBalance – BuyForm – Investu Development 3 .. 240

StoreNewPosition – BuyForm – Investu Development 3 ... 241

Investu Server Program – Version 2 – Development 3 .. 243

Namespaces/Imports – Investu Server Program – Investu

Development 3 ... 243

Global Variables – Investu Server Program – Investu

Development 3 ... 243

InvestuServerProgram_Load – Investu Server Program –

Investu Development 3 .. 244

InvestuServerProgram_Load – Investu Server Program –

Investu Development 3 .. 244

StartButton_Click – Investu Server Program – Investu

Development 3 ... 245

INVESTU – J—H----- 8

FillDB_Load – Investu Server Program – Investu

Development 3 ... 246

FillDBButton_Click – Investu Server Program – Investu

Development 3 ... 247

BackgroundWorker_DoWork – Investu Server Program –

Investu Development 3 .. 247

PopulateSymbolArray – Investu Server Program – Investu

Development 3 ... 248

Timer1_Tick – Investu Server Program – Investu

Development 3 ... 248

FetchLatestStockInfo – Investu Server Program – Investu

Development 3 ... 248

FormatString – Investu Server Program – Investu

Development 3 ... 248

UpdateDatabase – Investu Server Program – Investu

Development 3 ... 249

SplitStockInfo – Investu Server Program – Investu

Development 3 ... 250

CheckAlerts – Investu Server Program – Investu

Development 3 ... 250

SendAlert – Investu Server Program – Investu Development

3 ... 252

DeleteAlert – Investu Server Program – Investu

Development 3 ... 254

FetchAlerts – Investu Server Program – Investu

Development 3 ... 254

GetEmailUsingID – Investu Server Program – Investu

Development 3 ... 255

GetStockChange – Investu Server Program – Investu

Development 3 ... 256

GetStockPrice – Investu Server Program – Investu

Development 3 ... 256

GetStockName – Investu Server Program – Investu

Development 3 ... 256

StoreCrashInfo – Investu Server Program – Investu

Development 3 ... 256

Timer2_Tick – Investu Server Program – Investu

Development 3 ... 256

DBPathButton_Click – Investu Server Program – Investu

Development 3 ... 256

INVESTU – J—H----- 9

Testing 1 – Investu Simulation – Development 3 ... 257

MainForm Testing 1 ... 257

AdminView Testing 1 ... 276

Testing 1 – Investu Server Program – Development 3 ... 282

Conclusion ... 297

Feedback #5 – Users - Investu – Development 3 .. 298

Feedback #6 – Client - Investu – Development 3 .. 300

Updated Feature List ... 302

Changes for Future Developments .. 304

Improved analyitcal capabilities ... 304

Improved Potential for Expansion of User Base .. 304

Expanded Access to Indexes and Securities ... 305

Bibliography .. Error! Bookmark not defined.

INVESTU – J—H----- 10

Analysis

INVESTU – J—H----- 11

Background and Problem Identification

Summary of the Identified Problem

Mr. Butterworth, is the head of Economics at King Edwards School, who has had a lot of experience over

the years in preparing students for the Student Investor Challenge. As an Economics and Computing

student Mr. Butterworth approached me in search of a solution regarding the Student Investor Challenge

that the school participates in. Mr. Butterworth feels that those who are not currently competing in the

Student Investor Challenge generally didn’t do so as they felt they didn’t have enough experience to do

so, and even those who did participate feel they could be in a much stronger position had they had some

prior experience before starting the competition.

Background and Explanation

The A-Level Economics course does not go into a lot of detail regarding stocks and investment, despite

the fact that trading stocks and shares is a significant part of Economics in the real world and relies

heavily on many of the underlying principles of Economic theory. The first exposure most students get to

investment is in the Student Investor challenge, an investment challenge participated in by around 40,000

students from across the UK, who compete in teams of 4, investing £100,000 of virtual money on stocks

such as those in the FTSE100i. The teams aim to try and make the most money possible in the time

allowed, with the top 500 teams going through after 2 months to compete in further rounds. Of those 500

teams, the winning team receives a paid trip to New York, and money for their school.

With such a large prize available and the prestige that comes with winning the Student Investor Challenge,

one would imagine there would exist a program to practice buying and selling stocks before the Student

Investor Challenge starts. As an Economics student and a Computing student, I was interested in

whether this software existed. However, after much research there appears to be only a few reliable

programs, and those that do exist only support stand-alone accounts, with no built-in way to collaborate

with a team. Furthermore, during practice, it would be useful for teachers to be able to track student

teams who are planning to enter the challenge, and observe them as they prepare for the start date.

Through research I’ve found that this feature also doesn’t appear to exist.

It therefore appears that there is a need for a multi-user, integrated and intuitive simulator, to:

1) Allow students participating in the Student Investor Challenge to practice investing in the stock

market with the ability for teachers to guide and aid users in their trading decisions.

2) Allow even users not participating in the Student Investor Challenge to become familiar with the

concept of trading on the stock market, and to practice with the guidance and advice of their

teacher.

INVESTU – J—H----- 12

How the Stock Market Functions

A share is a piece of a company that someone can buy. When a company needs to raise extra funds, it

issues shares through an initial public offering (IPO), in which shares are issued at a price determined by

the estimated value of the company and the quantity of stocks being issued. These are then sold to

traders and investors. After these initial shares are sold, the company keeps the funds generated, and the

investors keep the shares they have bought in the company. The investors can then trade these shares,

with other traders, however the company now has no part in this deal and receives no money from any of

these trades.

Investors and traders by shares because they have a value that changes. If an investor buys a share, and

the value of that share increases, they can then sell that share for profit. The price of shares is

determined by the market, which is a huge collection of investors and traders who buy and sell stocks. It

should be noted that when an investor decides to buy shares for a certain price, there must be someone

else in the market willing to sell their shares for that same price. If there exists a higher demand for

shares in a company than there exists supply, then the price of the company’s shares will be driven down,

and vice versa. The fluctuations in supply and demand for shares are simply referred to as ‘market forces’.

The reasons behind why these market forces push or pull in a certain direction are, in their most basic

form, the feelings and attitudes of investors towards a certain company. These feelings and attitudes are

largely dictated by the earnings of a company. If a company’s revenue begins to decrease, an investor

would perceive shares in that company to be of less value, and so be more reluctant to purchase them,

leading to a fall in demand and an increase in supply, and hence a drop in the price of the shares.

In reality, however, it can be very difficult pinpoint the future prices of stocks and shares, and there

doesn’t exist a perfect model that can explain with complete certainty the reasons behind fluctuations, or

predict them in the future. iiShares are volatile, meaning their price can change rapidly, with seemingly

very little reason. It is this quality that makes trading shares a potentially lucrative pursuit.

The stock market can be divided into sections that are valued using indexes. An index is the

measurement of value of a selection of stocks, calculated from the prices of the stocks that comprise it.

There are many such indexes, the most well-known of which being the FTSE 100, S&P Global 100 and

the MSCI World. The FTSE 100 is a list of 100 companies on the London Stock Exchange that hold the

highest market capitalization. The FTSE 100 is used as a gauge of growth in the UK, and is one of the

indexes that can be traded on in the Student Investor Challenge, and is arguably the most relevant index

to track for investors in the UK.

INVESTU – J—H----- 13

Terminology

The following are definitions of subject-specific terms and phrases that appear in the write-up of this

project iii

Security A tradable financial asset – refers to any form of

financial instrument including stocks and shares

Stock The general term used to describe ownership

certificates of a part of any company

Share Usually used to refer to shares in a specific

company

Index A hypothetical portfolio of securities tracking a

particular market

FTSE 100 An index tracking the top 100 UK based companies

with the highest market value

Market Value The price which a security would fetch in a market.

Shareholders An owner of shares in a particular company – an

individual who has an interest in the success of the

company

Execution The completion of a buy or sell for a security

Quote The most recent price at which a security was sold

Ask quotes are the most recent prices and

quantities at which shares can be bought or sold

Volume The quantity of securities in a given market traded

in a given period of time

Initial Public Offering The initial value at which a company sells its

shares, usually by companies looking to quickly

raise revenue

Volatility The statistical measure of the dispersion of returns

in a given security, calculated using the standard

deviation. Generally, the higher the volatility, the

riskier the investment

INVESTU – J—H----- 14

Investor A entity who puts money into securities or

commodities with the expectation of receiving profit

Market Capitalization The value of a company traded on the stock

market, calculated by multiplying the current share

value by the total number of shares

Intra-day Price The movements of a share price during the day

Outstanding Shares Refer to the number of shares owned by investors

Day trading Short term trading of securities in which the buying

and selling takes place within the same day

Hedging The practice of taking a position in one market to

offset the risk adopted by in an opposing market

Portfolio A range of investments made by a person

Spread The difference between the bid price and the ask

price of a security

INVESTU – J—H----- 15

Interview with client

The following is an interview with the client, Mr. Butterwort, the head of Economics at King Edwards

School. The interview has been edited for brevity.

“What would you say is the issue currently with the Student Investor Challenge?”

“I feel as though a lot of students go into the challenge with very little knowledge of trading, because it’s

not a topic covered in our syllabus. Of course, the economic principles that underpin the stock market are

covered, but you can’t substitute real life experience with theories from a textbook. On one hand, that’s

the whole point of the challenge – to expose the students to the world of trading, but on the other, with it

becoming so competitive, those without some background knowledge and experience are struggling to

place well. The students need a way to practice before the start date of the challenge, so that when it

starts, they have their strategy and knowledge already in place to do the best they can.”

“Why do you think this is an important problem to solve?”

“The challenge is becoming increasingly more competitive, and over the years has become well known

because teams who do well have a good chance of winning pretty significant prizes, and recognition for

their achievements from Universities and employers and so forth. When a student includes it on their

personal statement, that they’ve placed highly, it creates a good impression. It’s therefore quite important

for us to step up our game when preparing our students, so that they have a head start over teams from

other schools, and can do as well as possible. Although having said that, I’m not sure how long we’d keep

that advantages as a program that solved this problem would be widely used by other schools who do the

challenge.”

“If we were to create a simulator to model the trading experience, how would that help solve this

problem?”

“A simulation similar from the one they use in the real challenge would allow the students to practice

before the real simulator is available to the teams, which is obviously a great head start as almost all

students entering the challenge

“Could you specify what features you would the simulation to have?”

“Well the program would need to have the ability for students to login into their account and buy and sell

stocks, like the Student Investor Challenge. They should have a balance, maybe that I can see and edit.

They would have to be able to see all of the stocks they currently have in their portfolio, and sell them if

they decide it’s a good time to sell. It would be useful to be able to see the historic prices of a stock, so

the students can see where the price has moved in the past 24 hours, for example. To simulate the real

thing, teams should definitely be able to work together, and perhaps share their balance together so that

all of their trades contribute to one team result. It would help if I could have an overview on a teachers

account, of all the teams in the school. Because a lot of students don’t have much experience with trading,

if the program could suggest stocks to invest in, and suggest stocks to stay away from, it might help the

students to start to get a feel of which stocks to trade and why.”

INVESTU – J—H----- 16

Interview with users

Ben is a student participating this year in the Student Investor Challenge. His team was 4th out of 10,000

teams last year, narrowly missing out on the prize money. The following is an interview with him which

aimed to discover other areas that could be improved upon, and further features, other than those already

suggested by Mr. Butterworth, that Ben and his team feel would have been useful to have access to

before the challenge started. The interview has been summarized for brevity.

“Ben, the basic premise of the program would be a stock trading program that your team could

log into at any time, ever before the competition has started, to practice trading. At its core, what

do you think this program should be able to do?”

“I think what’s most important is that the program has instant access to the prices of stocks in the FTSE

100, as that’s the index we trade on most. Also, it would be good if the price data is displayed in real time

and is accurate. Without that, it’s very difficult to trade as information displayed on websites and on the

program, wouldn’t match up, which would make our research confusing and would mean we’d probably

make decisions based on misleading information”

“Visually, how do you imagine this program looking?”

“I find the actual program for the challenge is quite difficult to use. Its cluttered and not clear, with

information spread over many tabs. To make progress faster, we’d like a program that clear and concise,

with information displayed in an easy to understand way. Perhaps it would have stock information on one

side and a list of stocks currently in our portfolio on the other. There would also need to be space for

other information like notes and graphs.

“What other features do you think would add to quality-of-life when using the program?”

“If data from the last hour, day and week could be visualized in graphs, it would make the process of

deciding which stocks to invest in a lot clearer and more accurate. Also, the program for the actual

challenge wastes a lot of our time as it doesn’t display the commission charge for each trade. If that could

be displayed before each trade it would save us having to work it out, which would allow more time for

more important things like researching stocks. With all of us logging in and trading at different times of the

day it can sometimes be difficult to know who’s bought what and why. If we could see who made which

trade and their reason why in a notes section it would clear up a lot of confusion. None of us are that

great at computers so I think if it could be as simple to use as possible it would be good.”

“It would be good if this program was useful not only for the Student Investor Challenge but also

for general use by students, after the challenge is over. Can you think of any features that could

be added that would be beneficial in that respect?”

“Yes – there are some features that the challenge doesn’t have but would be very useful if we used the

simulator outside of the challenge, like later in the year. – the Stop Loss / Take profit feature is one of

them. That basically would allow us to set a price that, if reached by a stock, would automatically trigger it

to be sold, to allow users to cash out or stop losing money, even if they aren’t online at the time. Being

able to see the volatility of a stock is another idea. Depending on your strategy, stock volatility is a great

indicator of whether to invest or stay away from a trade.”

INVESTU – J—H----- 17

Description of the current system

The system currently in

place is the Student

Investor program. The

interface the user is faced

with when they log into the

program. It features 8

buttons that allow the user

to navigate. The function

of each button is not

overly clear for new users.

Selecting the first box opens

the Investor Portfolio for the

team, which displays the

interface to the right. This

has the list of currently open

positions and the details for

those positions

INVESTU – J—H----- 18

Selecting the

gold button on

the main page

takes the user

to a list of FTSE

100 stocks and

displays

relevant

information

such as latest

price.

INVESTU – J—H----- 19

Feature List

After analyzing the interviews with the client and user, and looking at the Student Investor Challenge

program (screenshots provided by the user, Ben), the following list was compiled. It consists of features

that are intended to be implemented into the simulation. After each feature, ‘client’, ‘user’ or ‘SIC’ is

written, indication whether it was the client, user, or Student Investor Challenge that inspired that feature.

‘Inferred’ means that although not explicitly stated, this feature will be necessary for the other features to

be added.

• Ability to create and login to accounts (client)

• Ability to join and trade on a team account (client)

• Ability for users to be designated as admins (client)

• Ability for account progress on team and personal accounts to be saved between sessions

(inferred from client and user)

• Ability for admins to view teams list (inferred from client)

• Ability for admins to view team details and progress (inferred from client)

• Ability to view real-time information for all FTSE 100 stocks (client and user)

• Ability to select an amount of stocks and buy that amount using an up to date virtual balance, at

real current price (client/user)

• Display for all stocks currently held in portfolio (client/SIC)

• Ability to sell stocks in portfolio at real current price (client)

• Graphs to display current day price trends of all stocks (user)

• Graph to show all time price changes of all stocks (inferred from user)

• Ability to create price alerts and be notified when stock reaches current price (inferred from user)

• Interface allowing users to see all current alerts on their account (inferred from user)

• Interface allowing user to see entire trade history (SIC)

• Interface allowing user to see all stocks in the FTSE 100 in a single screen, with details such as

price (SIC)

•

• Notes section displayed in trade history and portfolio with reasons for trade decision (user)

INVESTU – J—H----- 20

Feedback #1 - Client

The following is a brief email discussion with the client regarding the feature list, in order to check that the

project is progressing in the right direction before continuing with the analysis and design phase. The

replies have been edited for brevity.

“Mr. Butterworth, attached is the General Plan for the project, with the feature list included. Do

you have any comments regarding the project so far?”

“Structurally that outline looks very good, and I’m sure if you could get all of those features in the

simulation will do everything we need it to do. I would add, however, that some extra information

displayed would perhaps make the trading experience a bit more enjoyable for the students. By that I

mean things like world events and recent market news, to liven it up a little. On a slightly larger scale, I

think features such as currency trading, or trading on commodities and other indices could increase the

scope of the program and would be a really positive addition. Students have become quite interested in

crypto currency recently and so I think if we could possibly add those trading options in it would really

increase the pull of the program from not just Student Investor participants, but to a much wider base of

economically minded students.

“I’ll take that into consideration. Now that we’ve discussed potential additions, is there anything

there that you don’t think needs to be in the program?”

“No not at all – I think it’s looking good. I look forward to seeing the program develop! Good luck.”

Feature List Updates

Following this discussion, the following have been added to the feature list:

• News section displaying market news (client)

• News section displaying world news and events (client)

INVESTU – J—H----- 21

Objectives

General Objectives

In general terms, the goal of the project is to create a program that will allow users to trade stocks on the

stock market, with a virtual balance, to aid their understanding and develop their trading strategy and

ultimately increase success rates in the Student Investor Challenge.

Specific Objectives

The following is a list of objectives that the program needs to meet in order to fulfill the criteria set by the

client and the users. These have all been derived from the interviews with the client and user, and from

the feature list.

Objective

S
p
e
c
ific

?

M
e
a
s
u
ra

b
le

?

A
tta

in
a

b
le

?

R
e
le

v
a

n
t?

Create an intuitive interface with easy-to-use controls

Ability to select stocks and view the price info within a 30

second delay of real price

Visualization of price changes of current stock, and ability to

display historic price data

Ability for users to buy and sell stocks using a virtual balance

that is kept up to date.

Ability for users to trade on a private account or on a team

account

Ability for teacher to create teams and observe their progress

Implementation of all secondary features stated in the feature

list, such as a news feed, trade history, alerts system etc.

INVESTU – J—H----- 22

Potential Solutions

There are multiple different ways which the client could solve their problem. The following is a list of

Current Software

The current software used by the students is the actual software that is used in the challenge. This does

have the advantage of being already in place, and of course is the real program being used in the

challenge, but is only accessible during the period of the competition and is made unavailable after the

challenge ends. It is therefore not possible to practice on it before hand or after the challenge ends. The

features of the actual program used are extremely basic and so students waste a lot of time of manually

completing repetitive tasks that could easily be automated, which would avoid students wasting valuable

practice time and allow for faster progression. For this reason, the current software does not meet the

requirements of the client and is therefore not a feasible solution to the problem.

Online Software

Although there are strong candidates for online software that could perhaps be used, there exists a trend

among them that makes them unattractive solutions to the problem; over-complicated interfaces and the

inability to work as a team. Although the current software is too basic, online solutions tend to be at the

opposite end of the spectrum, with hundreds of superfluous features that students don’t need. Online

solutions also only provide stand-alone accounts that cannot link to other accounts to form a team. This

combination of factors means using online software would not provide a realistic enough practice

environment for students. Online solutions are therefore not adequate to solve the problem.

Bespoke Software

Bespoke software is a solution that provides a completely original piece of software that would fulfill the

specific requirements of the client, and would be made by professional programmers. Although this

software will play an important role for the students, it would be difficult to justify the financial cost of

designing it. Furthermore, by contracting programmers from outside the school one runs the risk of facing

communication barriers, which would lead to a costly solution that does not completely fit the design

description. The department does not have the budget for an investment of this size and so for now, it is

not a feasible solution to outsource this project to a software design company.

Visual Basic Solution

A VB solution would still be a bespoke piece of software; however, it would be created in-house and so

would be effectively free. With a solution created internally within the school, it allows for much easier

communication between the client, end-users and the developer, with the added bonus of being

completely free. This means the objectives can be met much more easily and without instructions and

requirements being lost in transmission between the developer and the client, and no financial cost to the

school A solution programmed in Visual Basic would be able to fulfil all the requirements needed by the

client as VB is, despite being basic, able to handle all of the data needed and has the functionality to

easily create the required program.

We can see that the other possible solutions are inadequate to solve the problem set by the client, and

therefore can conclude that a solution programmed in Visual Basic would be the best option to create

software that meets all the requirements set by the client.

INVESTU – J—H----- 23

Advantages of Visual Basic

• Visual Basic is an intuitive and easy to understand language and the IDE has been optimized for

rapid application development.

• Visual Basic has a built-in section for GUI development, making it easy to design and implement

an effective and intuitive user interface.

• Visual Basic has built in features that allow for visualization of data in graph.

• Visual Basic has built in features that allow for processing of XML data and data from Access

Databases.

Limitations of Visual Basic

• Visual Basic is an object orientated programming language that does not have a mechanism for

handling hanging objects, and as such is prone to memory leakage.

• Visual Basic operates sluggishly in comparison to other programming languages, when dealing

with network traffic and high volumes of data.iv

General Limitations for the Project

• Due to time constraints, it will not be possible to create feeds for every single index and type of

security – commodities like gold and oil, and other indexes such as NASDAQ and the FTSE 250

will not be able to be traded on. For this reason, the focus will be on the FTSE 100 index.

• Google Finance provides data that is usually between 1-15 seconds old, however due to latency

on the school network and processing time required by the program, data may be up to 30

seconds old.

INVESTU – J—H----- 24

Data sources and destinations

This project will need data from multiple sources.

• The first source is User1 (the students/users) who will input information such as their username

and password, stock symbols and quantities, which will be processed by the program.

• The fourth source of information is provided by User2 (the admin/teacher), which is a different

account type that allows for observation of student accounts. The User2 account type can view

create teams, account details and portfolios and adjust balances.

• The third source is the Internet, from which the program will extract stock information based on

the information input by the user.

• The fourth data source will be a database, from which portfolios and user information such as

balance and user ID can be extracted, based on login information provided by the user.

INVESTU – J—H----- 25

Data Input by User1

Input Process Output Destination

Username Compares

username with

accounts in

database then

checks to see if

there exists a

match

Username exists /

Username does

not exist.

Ability to progress to password stage

Password Assuming

username exists in

database,

compares the

password against

the password in

the database, and

checks for a match

If there is a match,

login is successful

and the main

program opens,

else login is

unsuccessful

Ability to open the main program if both

the username and the password match

Select Stock The selected stock

is queried in

database function

to receive an

output string of

information

regarding that

stock

A string of

information about

the selected stock

is output, which

can then be split

into individual

details of the

stock, e.g. price

The price of the stock is displayed in

the StockPrice box.

The price of the stock is also mapped

onto a graph.

The name of the company whose stock

is being queried is displayed in the

StockName box

Buy Quantity Perform a

multiplication of

BuyQuantity and

StockPrice

Total price of

purchase

Output on the ‘Buy’ screen to show the

user the amount of money they will

spend on a purchase

INVESTU – J—H----- 26

Data Input by User2

Input Process Output Destination

Team Name Queried against

the database to

check if they

already exist

The name, team

code and balance

are inserted into

the database and

therefore a new

team is created

The admin has created a new team

that is now stored in the database and

can therefore be joined by users

Team Code

Starting Balance Validated to check

if within the

bounds of

accepted balances

Selected Team Selected Team

name is queried in

the database

All the information

relating to that

team is returned

A display box on the admin page

Data Retrieved from Database

Input Process Output Destination

Query for user info The table relevant

to the query is

searched for the

data relating to the

query

Login details are returned to the

client

Login form

Query for 24-hour

graph data

The last 24 hours of data

relating to the queried stock are

returned to the client.

Graph displayed on the

main form

Query for all-time

graph data

All data relating to the queried

stock are returned to the client

Graph displayed on the

main form

Query for trade

history

All trade history relating to the

queried account or team is

returned to the client

Trade history section on

the main form

Query for open

positions

The portfolio relating to the

queried account or team is

returned to the client

Portfolio section on the

main form

Query for alerts

All alerts relating to the queried

account or team are returned to

the client

Alerts section on the main

form

INVESTU – J—H----- 27

Data Retrieved from the Internet

Data Source

The data needed for the program will be collected from the Stock Market. Google Finance is one medium

through which this data can be retrieved. Inside Google Sheets, the GOOGLEFINANCE function can be

called to retrieve information about a stock. The syntax for the function is as follows;

GOOGLEFINANCE(“Symbol”,”Attribute”)

For example, to retrieve the current price of Barclays shares we can call the price attribute, using the

symbol for Barclays, which is BARC. This is called in the function area for the cell, as shown in the

example below

By inputting all the stock symbols for the companies listed in the FTSE 100, and using the attributes

“name”, “price” and “change”, we can create a spreadsheet that acts as a live feed for all prices in the

FTSE 100, as well as displaying the full name of the company and the intra-day change in price.

INVESTU – J—H----- 28

This spreadsheet will be the main source of the data for the real-time section of the program, which

displays a live feed of the prices of the stocks.

INVESTU – J—H----- 29

Visual Basic supports XML, so to retrieve the data, we must can pull it from the document by converting

the document into an XML-based RSS feed. For this to work, we need to publish the document;

INVESTU – J—H----- 30

Once the document is published, it can act as an RSS feed. Using a query link, we can query the

document for information;

https://spreadsheets.google.com/feeds/list/1LI2Co50o8hTSf_fg1ULoK1dpKae1uJWhD

WiLRlv9yaE/1/public/basic?sq=symbol=BARC.L

This link has the symbol “BARC.L” appended to the end, and so will return the information for Barclays

stock prices, in XML format:

Inside this XML is the information we’ll need in the program. This XML is structured and so it will be easy

to sort through and extract the relevant information using Visual Basic.

Data Destination

The data retrieved from the internet will end up in two locations:

1) Database – The stock data will be recorded into the database roughly every minute to

keep a record of the history of each stocks price, so that graphs can be plotted.

2) Simulation – The stock data for a certain stock will need to go directly into the program

when a user selects that stock. It could be argued that this is unnecessary as the up-to-

date data is already being sent to the database and so the latest entry for the selected

stock could just be selected and displayed directly from the database. However, by

fetching it directly from the internet it will avoid making an unnecessary connection to the

database and avoids complications that may arise from database connection errors, out

of date database data and server crashes.

https://spreadsheets.google.com/feeds/list/1LI2Co50o8hTSf_fg1ULoK1dpKae1uJWhDWiLRlv9yaE/1/public/basic?sq=symbol=BARC.L
https://spreadsheets.google.com/feeds/list/1LI2Co50o8hTSf_fg1ULoK1dpKae1uJWhDWiLRlv9yaE/1/public/basic?sq=symbol=BARC.L

INVESTU – J—H----- 31

Data volumes

Volumes of Data Input by User

Variable Names Data Type Data Size Description of Data

Username String Up to 32 bytes The username will be a

string with a limit of 16

characters

Password String Up to 32 bytes The password will be a

string with a limit of 16

characters

BuyQuantity Integer Up to 12 bytes An integer up to

100,000

SelectedStock String Up to 12 bytes A string determining the

stock to query – stock

symbols are between 4

and 6 characters

BuyComment String Up to 512 bytes A short comment up to

256 characters

Volumes of Data Retrieved by Program

Data Data Type Data Size Description of Data

Stock XML of a specific

stock

String 1954 bytes The raw XML data

retrieved from the

Google Sheets file via

an RSS feed

Extracted string from

the XML

String Between 32 and 64

bytes

From the raw data, the

string of relevant

information can be

extracted. The size of

this data varies

depending on the length

of the company name

and the value of the

stock

INVESTU – J—H----- 32

Last 24 hours of price

data for a specific stock

Array of Integers Between 3-6 Bytes for

each integer, with 450

minutes in a trading

day. Therefore between

1350 and 2700 kb for

each stock.

There are 450 minutes

between 9:00am and

4:30pm, and the price

will be recorded into a

database for each

minute. Therefore, when

retrieving the data for

the last 24 hours of

trading there will be up

to 2700 kb per stock

INVESTU – J—H----- 33

Proposed solution

Flowchart for Proposed Solution

INVESTU – J—H----- 34

Design

INVESTU – J—H----- 35

General Plan

The aim of the project is to create a program that a teacher can create a team on, then invite students to

join their team. Students should then be able to create an account using this team invite, and then login to

their account. Once logged on, the students should be able to buy and sell stock using their virtual

balance, with the program providing information to help users to judge their trading decisions.

The program will have a database that stores all the data needed, such as account information and the

latest stock data.

To fetch the stock data even when the program is not running, there will need to be a secondary program,

which will need to be run 24/7 on a server so that it is able to fetch constant price updates.

Feature List

To break this down further, the following is a feature list of all the features that will be included in the

program. All of these features are derived from the interviews with the client (client) and user (user), or

from researching the Student Investor Challenge software (SIC).

• Ability to create and login to accounts (client)

• Ability to join and trade on a team account (client)

• Ability for users to be designated as admins (client)

• Ability for admins to view teams list (inferred from client)

• Ability for admins to view team details and progress (inferred from client)

• Ability to view real-time information for all FTSE 100 stocks (client and user)

• Ability to select an amount of stocks and buy that amount using an up to date virtual balance, at

real current price (client/user)

• Display for all stocks currently held in portfolio (client/SIC)

• Ability to sell stocks in portfolio at real current price (client)

• Graphs to display current day price trends of all stocks (user)

• Graph to show all time price changes of all stocks (inferred from user)

• Ability to create price alerts and be notified when stock reaches current price (inferred from user)

• Interface allowing users to see all current alerts on their account (inferred from user)

• Interface allowing user to see entire trade history (SIC)

• Interface allowing user to see all stocks in the FTSE 100 in a single screen, with details such as

price (SIC)

•

• Notes section displayed in trade history and portfolio with reasons for trade decision (user)

• News section displaying market news (client)

• News section displaying world news and events (client)

INVESTU – J—H----- 36

System Design

From the general plan we can see that there are 5 main forms that are needed:

• LoginForm – the first form shown to users. From here users can login to their account, or create

a new account

• SignUpForm – this form should allow users to create a new account that can then be logged in

to. They must be able to link their account to a team here.

• AdminViewForm – this form should be used by teachers, and should provide an overview of all

of the teams that they have created, showing details about the progress of each team and the

details of each user in each team. AdminView should also allow for creation of new teams.

• MainForm – the main form should be the heart of the program and will contain most of the core

functionality of the program. Features should include the ability to buy and sell stocks, an

overview of a students or teams portfolio, live feeds for the latest stock prices and news, the

users trade history, and the ability to create alerts for stock prices.

• BuyForm – from the main form, the user should be able to buy stocks, once they have chosen a

stock to invest in. This should open a new form called BuyForm, which should allow users to view

the name and price of the stock they are investing in, and to select the quantity they wish to buy.

Program Flowchart

The flowchart shows the flow of the forms, and the sequence in which they are loaded and viewed by the

user. The normal program sequence would be LoginForm -> MainForm -> End, with AdminForm,

SignUpForm and BuyForm all being optional interfaces for already-registered users.

INVESTU – J—H----- 37

Data Flow

The following table shows the data flow within the program. Each form will have data being input into it,

and will have to process that data to create an output. This table details those inputs, processes and

outputs specifically.

Form Name Input Process Output

LoginForm Username (str),

Password (str),

TeamMode

(bool)

When the user clicks the login

button, the program will query

the database twice: Firstly, the

program will scan all

usernames in the database to

check for a match with the input

username. Secondly, if a

username match is found, then

a query of the password related

to the stored username is

performed. If this password

matches the password input by

the user, then a Boolean

LoginSuccess will be set to

true.

If LoginSuccess is true, then the

user is shown the main form.

The Boolean TeamMode will be

set to true or false depending

on the Boolean in the

LoginForm.

If LoginSuccess is false, then

access is rejected.

SignUpForm Username (str)

Password (str)

Email (str)

TeamCode (str)

Firstly, the username will be

queried in the database, to

check if that username already

exists.

If the username already exists,

the sign up is rejected. If it

doesn’t exist, then an account is

inserted as a new entry into the

accounts table of the database.

AdminViewForm TeamName (str)

TeamCode (str)

StartingBalance

(int)

When ‘Create New Team’ is

clicked, a validation check will

be carried out on TeamName

and TeamCode, to check there

does not exist a team with

these details already. Then a

connection to the database is

opened and the data is inserted

into the respective columns.

If validation is successful, a new

team is created in the database.

MainForm SelectedStock

(str)

When the user selects a stock,

the program will fetch the

current data for that stock, and

The current data will be

displayed in textboxes, such as

‘Price’ and ‘Change’ and the

INVESTU – J—H----- 38

also the historic data of that

particular stock.

historic data will be displayed in

graphs to show the price trends

of the last 24 hours.

BuyForm Quantity (int)

Note (str)

In the Buy form, the user can

select the quantity they want to

buy, of the currently selected

stock. This is multiplied by the

current price.

The result of the price multiplied

by quantity will be output in a

textbox. When the buy is

confirmed, the quantity and total

price, as well as other details

about the buy will be displayed

in a textbox called

‘OpenPositions’, showing all of

the current open positions of the

user. The details will also be

inserted into the database, so

that they can be loaded when

the user logs back in again.

INVESTU – J—H----- 39

Form Layout Designs

The visual aspect of the program is very important, as can be seen in the objectives derived from the

interviews with the user and client. It is therefore important that the GUI is thought of and laid out carefully,

in order to create an intuitive and easy to use interface that makes the user experience simple and

enjoyable. The following are mock designs of the forms that will be discussed with the client and end

users in order to discover which design is most suitable for this project. All mock-ups were created in

Photoshop, employing the grid tool for spacing and alignment purposes.

Main Form

1. Input box for stock symbol

2. Users / Teams current balance

3. Full company name that corresponds to the stock symbol selected by the user

4. Price of 1 share in the currently selected company

5. Intraday change of the currently selected share

6. Intraday volatility of the currently selected stock

7. Buy button to open BuyForm

8. Alert price input box for the currently selected stock

9. CreateAlert button to create an alert at the price set in 8 for the currently selected stock

10. OpenPositions textbox that displays all currently open positions

11. ClosePosition button that closes the currently selected position in the OpenPositions textbox

12. Tab1 – displays 24-hour price history graph in 16 for currently selected stock

13. Tab2 – displays all-time price history graph in 16 for currently selected stock

14. Tab3 – displays market news for the FTSE100 in 16

15. Tab4 – displays all alerts currently active for the user/team logged in

16. Displays the currently selected tab – when one tab is selected, all content from other tabs is

hidden

INVESTU – J—H----- 40

Buy Form

1. Company name

2. Current price per share of currently selected

stock

3. A track bar to allow users to select the

quantity they wish to buy

4. Output of the track bar – a numeric value of

how many shares the user has selected to

buy

5. Price of total purchase – calculated using

number in 2 multiplied by number in 4

6. Notes section in which users can write

comments detailing any useful information

regarding the buy

7. Buy button

Login Form

1. Username box for existing users to

enter their username into

2. Password box for existing users to

enter their password into

3. Login button to login to the program

and proceed to the main form

4. Cancel button to close the program

5. Informative text regarding signing up

6. Sign up button which loads the sign

up form

INVESTU – J—H----- 41

Sign-Up Form

1. Useful information regarding how to

use team codes

2. Username box for new users to enter

their desired username into

3. Username box for new users to enter

their desired password into

4. Email box for new users to enter their

email into, for verification purposes

and for use when sending alerts

5. Team code box for new users to

enter the team code they have been

provided, in order to be assigned to a

team

6. Sign up button to create an account

using the details provided in boxes 2-

5.

Admin View Form

INVESTU – J—H----- 42

1. Teams box – all teams created by this admin are displayed in a textbox here

2. Team Name for new team creation – this will be the name of the new team being created

3. Sign up code for new team creation – this will be the code used by users to join the team about to

be created

4. Starting balance – this is where the balance that the team will start with is set

5. Useful information regarding team creation

6. CreateNewTeam button – this inserts the new team into the database and from then on students

with the sign up code will be able to join it

INVESTU – J—H----- 43

Database Design

It is clear that a database is necessary for this program to run, both for the login system and for the ability

to remember data between logins, and across multiple accounts. To create a database, we first need to

detail each table and the data that it will hold, and then draw relationships between the tables.

Normalisation

To create an efficient database, we must use database normalisation, the goal of which is to “create a set

of relational tables with minimum amount of redundant data that can be consistently and correctly

modified”v. Normalisation comes many different forms. The form we will be applying is 3rd Normal Form.

However, because each stage of normalisation depends on the previous stage, we must first start at 1st

Normal Form, and move upwards

1st Normal Form

1NF dictates that all attributes in tables within the database must be atomic data. That is, there cannot be

field that holds two values. Each field name must be unique and there must also be no repeated data.

2nd Normal Form

A database that is in 2NF must be in 1NF, but with an additional rule. The additional rule is that no non-

prime attribute is dependent on a key within the table. That is, if an attribute is a subset of the key, then it

should not be stored in a table.

3rd Normal Form

A table is in 3NF if it is first in 2NF, and then for every dependency, either the dependent variable is a

super key of the table, or the thing that is being depended on is a prime attribute of the table. Another way

of saying this, is that 3NF requires there be no non-key attributes that depend on other non-key attributes.

Following these rules of normalisation will lead to an efficient and compact database that can be queried

quickly, allowing the program to run as smoothly and fast as possible.

INVESTU – J—H----- 44

Tables

From the feature list derived from researching stock market simulators and the interview with the client

and user, we can extract the information we need to structure a database for the program. The tables will

be as follows;

1. tblUserInfo – for storing account information

2. tblTeams – for storing information about teams

3. tblTeamUsers – a link table storing all of the users in each team

4. tblStockDetails – contains all of the information of the stocks in the FTSE 100

5. tblStockPriceHistory – contains the price history of every stock

6. tblTradeHistory – a log of all trades made on the program

7. tblAlerts – contains information of all alerts currently set in the program

8. tblOpenPosition – contains information of all open positions currently in the program

9. tblCrash – a log of all crashes that occur in the program, for debugging purposes

Entity Relationship Diagram

INVESTU – J—H----- 45

Tables – Breakdown

tblUserInfo

AccountID Username Passwrd Balance Admin TeamName Email

tblUserInfo – This will be one of the most vital tables and will be used by the program when logging in.

This table will store all of the users information, including their login details, balance and team ID. Their

login details will be used to validate a login attempt, after which their balance will be loaded to allow them

to continue to trade. If the user runs the program in team mode, then the team ID will be used to identify

which team they are in, and then allow them to login to the account of the correct team.

tblTeams

TeamID TeamName UserTeamsID Balance

tblTeams – This will contain information about teams, including their unique Team ID, set by the admin,

which will be used by users to join the team and to uniquely identify the team. There will a link table

linking to tblTeamUsers which will store the ID of the team members. If there are less than 4 entries in the

link table that have a specific TeamID, then the program will know that the team is not full and users will

be allowed to join. The balance works the same way as a user balance, with the exception that the team

balance is shared between up to 4 accounts, whereas the user balance can only be affected by that user

when they’re logged into single user mode.

tblTeamUsers

TeamID AccountID

tblTeamUsers – This table is a link table that links up to 4 accounts to a team. Every time a user joins a

team, an entry will be made into this table linking the AccountID of the user to the TeamID of the team

they are trying to join. Before this is done, however, the program must scan the database to find out how

many users are already assigned to that team. If there are less than 4, then the user will be allowed to

join the team.

INVESTU – J—H----- 46

tblOpenPositions

PositionID AccountID StockSymbol StockQuantity BuyPrice TradeDate

tblOpenPositions – This table will contain information regarding positions that are currently open on each

users account. The table will contain every open position, regardless of whether it was made by a user or

a team. The positions will be tied to each account through the AccountID, and to teams through the

TeamName column, which, if the position was opened in team mode, will contain the team name, or if it

was opened by a user on single user mode, will contain nothing.

tblTradeHistory

TradeID AccountID StockSymbol StockQty TradePrice BuyOrSell TeamName Date

tblTradeHistory – This table will be updated every time a buy or sell action takes place. It includes the

AccountID of the user that made the trade, and all the relevant information related to the trade, such as

quantity and price. Because both buy and sell trades are stored, there is a column called BuyOrSell that

can be used to differentiate buy and sell trades at a later date. This information will all be presented to the

user so they can review their trade history.

tblStockPriceHistory

PriceID StockSymbol StockPrice FetchDate

tblStockPriceHistory – In order for the 24hr graph to function, the program needs historic data to read

from, which it can then plot into a graph and display to the user. This table stores this data, which will be

created by an additional program that will run 24/7 on a server. The table will contain the stock symbol,

current price, and the date at which the price was taken. Using this data, the program will be able to fetch

all entries where the stock symbol is the symbol of the company that the user is interested in investing in,

and then use the price and date of each entry to plot a graph.

INVESTU – J—H----- 47

tblStockDetails

StockSymbol StockName MarketSector Price Change

tblStockDetails – One feature of the program will be list, similar to that in the Student Investor program,

that shows the symbol, name, market sector, price and change of each stock, in one scrollable box. The

content for that box will be sourced from this table, which will be updated continuously with the latest

prices by the additional program running on a server.

tblAlerts

AlertID AccountID StockSymbol AlertPrice TeamName upOrDown

tblAlerts – When the player sets an alert, they may log off their account before the price gets to the alert

price, and so they will have no way of knowing whether the stock they were interested in has passed said

price. For this reason, alerts need to be stored in the database so that they can be processed even when

the program is closed. Alert processing will take place on the additional program on the server.

INVESTU – J—H----- 48

SQL Queries

Now that the list of table has been created, we can begin to plan the SQL Queries that will be needed and

the interactions between tables that will happen. This may be useful to refer back to during development.

This list is by no means exhaustive and only contains the most important queries that will definitely be

made. There could arise unexpected queries in future that will need to be added.

Form Query Name SQL

Query

Type

Related Table Description

LoginFor

m

CheckUserNa

meExists

SELECT tblUserInfo When a sign in attempt is made, this query will be used to

check if there is a username is the table that matches the

username entered by the user.

LoginFor

m

LoginSuccess SELECT tblUserInfo Once it is known that there exists a user with the given

username, the details of that user must be pulled from the

database so that the password can be checked for a match.

It will also then be important to know whether the user is an

admin or a student, and what team they are in.

AdminVie

w

FetchTeams SELECT tblTeams When admin view is loaded, the admin will need to know all

of the teams that they had. For this, a query is needed to

select the teams and all of their information from the

database, so that they can be displayed for the admin to

see.

AdminVie

w

ValidateNewT

eam

SELECT tblTeams The admin is going to have the ability to create teams. This

means there has to be a validation check to make sure the

team name and team code are unique. This query will

select every team name and team code and then scan

through each one, checking if it matches the new team

name/code. If there is a match, then the new team

name/code is invalid.

AdminVie

w

CreateNewTe

am

INSERT tblTeams If the new team information is validated, then a new team

can be created. This means all of the details have to be

inserted into the database, which will be done by this query.

AdminVie

w

FetchTeamInf

o - TeamInfo

SELECT tblTeams Part of the AdminView part of the program is for admins to

be able to see the progress of their teams. From the list of

teams loaded with the FetchTeams query, they should then

be able to view individual details of these teams. This will

be done by the FetchTeamInfo query, which selects all of

the currently selected teams information from the database

INVESTU – J—H----- 49

and displays it.

AdminVie

w

FetchTeamInf

o - UserInfo

SELECT tblUserInfo This query is also part of the FetchTeamInfo part of

AdminView, in which all of the teams info will be displayed

for the admin to see. A query will be needed to select all of

users in the team and their information, so that the admin

can monitor the team members and their details.

SignUpFo

rm

ValidateTeam

Code

SELECT tblTeamInfo Similar to the validation in the AdminView, this query will

also be used for validation. Before the user can sign up, the

program will have to check the team code is valid, by

making sure it does not already exist.

SignUpFo

rm

ValidateUsern

ameTeamCod

e

SELECT tblUserInfo This query will also be used for validation. Before the user

can sign up, the program will have to check the username

is not already taken, and that the team code selected is

available

SignUpFo

rm

CreateNewAc

count

INSERT tblUserInfo With all of the details given by the user, a new account can

be inserted into the database.

SignUpFo

rm

CheckSpaceIn

Team

SELECT tblTeams The teams will only have a maximum of 4 spaces available,

so if a user tries to sign up to a team with 4 players already

in, an error must be returned. In order to do this, the content

of the team must be retrieved and scanned to check if an

empty slot exists.

SignUpFo

rm

AddNewPlaye

rToTeam

UPDATE tblTeams With the AccountID, the new account can be added to the

team. This will be useful when a query is run about the

team, for example, when finding out how many players are

currently in a team.

MainForm FetchAlerts

FetchTradeHis

tory

FetchBalance

FetchOpenPo

sitions

SELECT tblAlerts

tblTradeHistory

tblUserInfo

tblOpenPositio

ns

When the program is loaded, all of the users/teams

information needs to be loaded so that they can continue

from where they left off.

MainForm LoadDetailsGr

id

SELECT tblStockDetails One feature of the program is a grid showing all 100 stocks

and their prices. The data for this is stored in the database

and regularly updated, and so to get it into the program a

INVESTU – J—H----- 50

query is needed.

MainForm Plot24hrData SELECT tblStockPrices When the program is run, graphs will be plotted. The data

for this will be collected when the program is not running

and so must be loaded upon loading the program.

MainForm UpdateBalanc

e

UPDATE tblUserInfo When a position is closed (a stock is sold) the users

balance needs to be updated, not only on the program but

also in the database. This requires and update query to

alter the balance in the UserInfo table.

MainForm ClosePosition DELETE tblOpenPositio

ns

When the position is closed, the database needs to be

updated, so that the user no longer owns those shares.

MainForm StoreNewTrad

e

INSERT tblTradeHistory When a position is closed, this counts as a trade being

made and so it has to be stored into the trade history table,

so the user has an accurate picture of the entirety of their

buy/sell history.

MainForm CreateNewAle

rt

INSERT tblAlerts Part of the main form GUI will be a section for users to

create alerts. These alerts must be stored so that they can

be monitored externally, and also so they can be displayed

at a later date for the user to see.

BuyForm UpdateTeamB

alance

UPDATE tblTeams If the user is on a team account, the balance affected when

they make a trade, is the team balance, and therefore there

needs to be different queries depending on whether the

program is running in team mode or not.

BuyForm UpdateUserBa

lance

UPDATE tblUserInfo This query will update the user balance when a trade is

made, however it will only be run if the program is not

running in team mode.

BuyForm CreateNewOp

enPosition

INSERT tblOpenPositio

ns

When a buy is confirmed, the database needs to be

updated with the new open position, so that it can be

remembered and reloaded when the program is reopened.

BuyForm CreateNewTra

deHistory

INSERT tblTradeHistory When a buy is confirmed, the database needs to be

updated with the new trade so that when trade history is

loaded later, it can be added to the history.

INVESTU – J—H----- 51

Pseudo Code for Forms

Login Form – Pseudo Code

When user clicks Login button

 Connect to database

If (SELECT Username, AccountID FROM tblUserInfo WHERE Username =

UsernameBox.text AND Password = PasswordBox.text) returns 1 reply Then

 AccountID = SQLReply.AccountID

UserValid = True

If UserValid Then

SELECT * FROM tblInfo, tblTeams, tblUserInfo

WHERE tblTeams.TeamID = tblUserTeams.TeamID

AND tblUserTeams.AccountID = tblUserInfo.AccountID

AND tblUserInfo.AccountID = AccountID

 If Admin Then

 Show AdminViewForm

 Else

Load AccountID, Username, TeamName, Balance, Email into

MainForm

 Show MainForm

Else

 Error

End If

Disconnect from database

End

INVESTU – J—H----- 52

AdminViewForm – Pseudo Code

Connect to database

SELECT TeamName, TeamID FROM tblTeams

Load TeamName, TeamID into TeamsList

Display all items in TeamsList into TeamsListBox

Disconnect from database

When Admin selects team from TeamsListBox

Connect to database

SelectedTeamID = TeamsList(TeamsListBox.selectedIndex).TeamID

SELECT All information relating to selected team FROM

tblOpenPositions, tblTradeHistory, tblTeams, tblTeamUsers,

tblUserInfo WHERE tblTeams.TeamID = SelectedTeamID

 Add all relevant team information to a display box

Disconnect from Database

When admin clicks CreateNewTeam button

 Connect to database

If (SELECT * FROM tblTeams WHERE teamName=’teamnamebox.text’ OR

teamCode=’teamCodeBox.text’) returns 1 reply Then

 Msgbox(“Invalid team code or team name”)

 Else

INSERT INTO tblTeams TeamName, TeamCode VALUES (TeamNameBox.text,

TeamCodeBox.text)

 End If

 Disconnect from database

INVESTU – J—H----- 53

SignUpForm – Pseudo Code

When user clicks SignUp button

 Connect to database

If (SELECT * FROM tblUserInfo WHERE Username=’UsernameBox.text’)

returns 1 reply OR PasswordBox.text doesn’t contain (at least 1 number

and more than 8 characters) Then

 Msgbox(“You’ve chosen an invalid username or password.”)

 Else

INSERT INTO tblUserInfo Username, Password VALUES

(‘UsernameBox.text’, ‘PasswordBox.text’)

End If

INVESTU – J—H----- 54

MainForm – Pseudo Code

When the user logs on

Determine whether the use is in TeamMode

 Load World News

 Load Market News

 Load Trade History

 Load Alerts

When the user selects a stock symbol

 PriceBox.text = FetchStockPrice(StockSymbol)

 NameBox.text = FetchStockName(StockSymbol)

 ChangeBox.text = FetchStockChange(StockSymbol)

 Plot24hrData(StockSymbol)

Sub FetchStock(Price/Name/Change) (byval StockSymbol)

 Query Google Sheets document for XML data of (StockSymbol)

 Create node list of XML

 Find node containing (Price/Name/Change)

 Return contents of node

End sub

Sub Load(Market/World)News

 Retrieve XML data from News RSS feed

 Split into nodes

 Add content of nodes to string and format

 Display formatted string in news display

End sub

Sub LoadTradeHistory

 Connect to database

If TeamMode = True then

 SELECT * From tblTradeHistory WHERE

tblTradeHistory.TeamName=’TeamName’

Else

 SELECT * From tblTradeHistory WHERE tblTradeHistory.TeamName=’0’

AND tblTradeHistory.AccountID=’AccountID’

 Display retrieved database in data grid view

End sub

Sub LoadAlerts

 Connect to database

INVESTU – J—H----- 55

SELECT * From tblAlerts WHERE tblAlerts.AccountID=’AccountID’

Display retrieved data in data grid view

End sub

When user selects a position and clicks ‘Sell’

 Balance = Balance + (Current price of stock * quantity owned)

 Connect to database

 INSERT INTO tblHistory (StockSymbol, Price, Quantity, Date) VALUES

(‘StockSymbol’,’Price’,’Quantity’,’DateTime.Now’)

 DELETE * FROM tblOpenPositions WHERE

PositionID=’OpenPositions(CurrentlySelectedOpenPosition.UniqueID)

Sub Plot24hrData

 SELECT * FROM tblStockPriceHistory WHERE

StockSymbol=’CurrentlySelectedSymbol’ AND FetchData >= Date.Today

 For Each Entry retrieved from database

 Add a new point to the graph with X=Price, Y=Date

 Next

End su

BuyForm – Pseudo Code

When user clicks Buy button

 Price = MainForm.Price

 Quantity = QuantityBox.text

 SelectedStock = MainForm.SelectedStock

 TotalPrice = Price * Quantity

 If Balance > TotalPrice Then

INSERT INTO tblOpenPositions, tblTradeHistory

(tblOpenPositions.StockSymbol, tblOpenPositions.StockQuantity,

tblOpenPositons.StockPrice, tblTradeHistory.StockSymbol,

tblTradeHistory.TradePrice, tblTradeHistory.BuyOrSell VALUES

(‘SelectedStock’,Quantity,Price,’SelectedStock’,Quantity,’Buy’)

 Else

 Msgbox(“Not enough money”)

INVESTU – J—H----- 56

Develop

ment 1

INVESTU – J—H----- 57

MainForm – Investu - Development 1

The first development of the program neglects the account system and does not have all of the features

laid out in the design. The purpose of this development is to get the main part of the program functioning,

the ability to read stock data and display it for the user, in the form of a graph.

Global Variables – MainForm - Investu Development 1

There are a number of global variables that will need to be removed and declared locally, however for the

purposes of the first version they will be declared globally.

Dim Balance As Integer = 100000000

The very first variable declared is balance, which is a count of the users’ money in pence, which they

currently have available to buy shares. The balance will be affected when a buy is confirmed and when

stocks held in the users’ portfolio are sold. In future versions, this variable will have a value that is loaded

in from the database, where the balance reflects that of the currently logged in user. For this version, the

balance is fixed and will reset to 100,000,000 pence every time the program is run.

Dim OpenPositions As New List(Of StockAttributes)

OpenPositions is built from the class StockAttributes, and will hold the information of all open positions

currently held by the user. These will make up the users portfolio.

Public Class StockAttributes

Public Class MainForm

 Public Balance As Decimal = 100000000
 Public StockInfo As String = ""

 Public OpenPositions As New List(Of StockAttributes)

 Public TimerInterval As Integer = 5000

 Public symbol() As String = {"RR.L", "AV.L", "BARC.L", "GSK.L", "TSCO.L",
"GLEN.L", "HSBA.L", "ITV.L", "BA.L", "ADN.L"}
 Public s As New Series

 Dim OpenPositionIdentifier As Integer = 0

INVESTU – J—H----- 58

 Public stockSymbol As String
 Public stockName As String
 Public stockValue As Decimal
 Public stockQuantity As Integer

End Class

StockAttributes is a class containing attributes related to stocks. Each stock has a StockName, (e.g.

BARCLAYS), a StockSymbol (4 letters with ‘.L’ appended e.g. ‘BARC.L’), and a value, which is measured

in pence and changes regularly. StockQuantity would hold the quantity of shares that the user holds.

Dim TimerInterval As Integer = 5000

The program will operate around a timer which executes code every 5 seconds. The more frequent this

timer ticks, the more up to date the stock information will be. More up-to-date the stock information is, the

more accurate the simulation will be, as the share prices users are trading with will be closer to reality.

Ideally, this would be set to 1000, to cause the price to update every second, however a request for

information from the internet usually takes more than a second. If the timer was set to 1 second, a stack

overflow error would eventually occur. For this reason, the timer is set to 5 seconds.

Dim Symbols() As String = {"RR.L", "AV.L", "BARC.L", "GSK.L", "TSCO.L", "GLEN.L",
"HSBA.L", "ITV.L", "BA.L"}

This array of strings is responsible for holding the Stock Symbols for the stocks that can be traded in the

program. The FTSE 100 has 100 companies; however, this list only shows 10 symbols for the purposes

of creating a working solution. Later, the symbols will be read in from a text file instead of being stored in

the program, and the whole list of 100 stocks will be included.

Dim Series1 As New Series

A series is VB is a line displayed on a graph. This series will hold the X and Y co-ordinates of each point

relating to the price of the data. It is called ‘Series1’ as in future, there may be a ‘Series2/3/4/5’ depending

on which variable attributes of each stock need to be measured and displayed. Having multiple series

allows for multiple lines to be displayed on one graph, which can help with visualization.

Dim StockInfo As String

The nature of how data is going to be retrieved means that stock information will enter the program as
XML data, and will need to be processed. Once it is processed, there will be a string containing all of the
information. This string will need processing further to extract each individual piece of information. This
composite string, before it is processed, will be stored as StockInfo. StockInfo can then be passed to
functions that specialize in splitting this string down into its component parts.

INVESTU – J—H----- 59

MainForm_Load – MainForm - Investu Development 1

When the MainForm loads, this code executes. The program itself is based on which stock is selected,

and there is currently no stock selected, so there is no significant code to run yet – this happens when the

user chooses the stock symbol they’d like to look into.

BalanceBox.Text = "£" & Balance / 100

This takes the balance declared earlier and divides it by 100, to exchange it from pence to pounds. The
user can no see their balance in an easy to understand format.

For L = 0 To Symbols.count - 1
 SelectStockComboBox.Items.Add(Symbols(l))
Next

The program will have a drop-down box containing all of the companies in the FTSE 100. From this list,

the user can select the stop they wish to view, which will bring up information like graphs and price data.

This for-loop populates the drop-down box with every item in the symbols array.

CreateChart()

CreateChart() is asub-routine that prepares the graph section of the program, ready for data to be added

upon selection of a stock.

Private Sub MainForm_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

 BalanceBox.Text = "£" & Balance / 100

 For L = 0 To StockDetails.Count - 1
 SelectStockComboBox.Items.Add(StockDetails(L).stockSymbol)
 Next

 UpdateIntervalComboBox.SelectedItem = "5"

 GraphScaleComboBox.SelectedItem = "3"

 CreateChart()
 End Sub

INVESTU – J—H----- 60

CreateChart – MainForm - Investu Development 1

This sub-routine configures the display of the graph. The chart is set to a line type with the X-axis set to a

DateTime value type. ‘Chart1.Series.Add(Series1)’ adds this newly formatted series to the graph,

called ‘Chart1’

Timer1_Tick – MainForm - Investu Development 1

The simulation will constantly be updating with up-to-date stock market information. Therefore, a timer is

needed so that information can be retrieved at a set interval.

Timer1.Interval = UpdateIntervalComboBox.SelectedItem * 1000

The first part of the Timer code makes sure that the timer interval is reset back to the time the user set it

to. This is done incase an update needs to be forced at any point, in which case the timer would need to

be set to an interval of 1 millisecond to cause the update to happen immediately. The timer is reset back

to normal each time tick by checking a combobox called ‘UpdateInterval’ in which the user can select a

time in seconds. This is then multiplied by 1000 and set as the timer interval.

FetchStockDetails(SelectStockComboBox.SelectedItem)

Sub CreateChart()

 Series1.Name = SelectStockComboBox.SelectedItem
 Series1.ChartType = SeriesChartType.Line
 Series1.BorderWidth = 4
 Series1.XValueType = ChartValueType.DateTime
 Series1.BorderWidth = 2

 Chart1.Series.Add(Series1)
 Chart1.Legends.Clear()

End Sub

Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Timer1.Tick

 Timer1.Interval = UpdateIntervalComboBox.SelectedItem * 1000

 FetchStockDetails(SelectStockComboBox.SelectedItem)

 NameBox.Text = splitStockInfo(StockInfo, "name").ToString
 PriceBox.Text = splitStockInfo(StockInfo, "price").ToString
 ChangeBox.Text = splitStockInfo(StockInfo, "change").ToString

 GraphSettings()
 PlotNewPoint(DateTime.Now, PriceBox.Text)

 End Sub

INVESTU – J—H----- 61

FetchStockDetails is a sub-routine that pulls the raw XML data from the internet and processes it. The

relevant information is then stored under StockInfo. This sub-routine is only passed a single parameter,

which is the stock symbol of the stock that is going to be queried.

NameBox.Text = splitStockInfo(StockInfo, "name").ToString
PriceBox.Text = splitStockInfo(StockInfo, "price").ToString
ChangeBox.Text = splitStockInfo(StockInfo, "change").ToString

 The user interface for the simulation has 3 text boxes that display information about the stocks being

views. These boxes show the company name, the current share price, and the intraday price change of

the stock. The simulation therefore needs a method of extracting this information from the StockInfo string

retrived via the FetchStockDetails sub-routine. This function is called SplitStockInfo, which can be passed

two parameters, StockInfo and the attribute needed to be returned, and it will return that attribute. This is

then made into a string and displayed in the textboxes on the user interface. StockInfo is global in this

instance of the simulation however in future versions it will not be and it is therefore passed to the

function as a argument to make it possible to remove it as a global variable in later versions.

GraphSettings()

GraphSettings is a sub-routine that adds further formatting to the graph displayed in the user interface.
GraphSettings needs to be constantly called as it formats the graph depending on the current price of the
stock, which is constantly changing.

PlotNewPoint(DateTime.Now, PriceBox.Text)

PlotNewPoint is a sub-routine that adds a point to the graph when a stock has been selected. It takes

DateTime as the X co-ordinate, and the price of the stock as the Y co-ordinate.

Sub GraphSettings()

 Series1.BorderWidth = 2
 Chart1.ChartAreas(0).AxisY.Minimum = PriceBox.Text -
Val(GraphScaleComboBox.Text)
 Chart1.ChartAreas(0).AxisY.Maximum = PriceBox.Text +
Val(GraphScaleComboBox.Text)

End Sub

GraphSettings visually updates the graph by changing the scale of the axis. By changing the value of a

combo box called GraphScale, the user can effectively zoom in or out of the graph.

INVESTU – J—H----- 62

Development of the sub-routine FetchStockInfo - MainForm - Investu

Development 1

The section focuses on the development of the feature that fetches the relevant stock information for a

symbol passed to it. This is vital for the simulation to function, as it will allow for the user to have accurate

stock prices and information, and allow for the creation and manipulation of data displays.

The creating of this sub-routine relies on a spreadsheet discussed in Design, under Data Sources and

Destinations. This spreadsheet contains all of the stock information for every company in the FTSE 100,

and utilizes the GOOGLEFINANCE function to keep stock information up to date.

When we search the Google Sheets URL in a search engine, with a stock symbol appended, this is what

is displayed:

When this XML is looked at more closely, a structure emerges:

<?xml version='1.0' encoding='UTF-8'?>

<feed xmlns='http://www.w3.org/2005/Atom' xmlns:openSearch='http://a9.com/-

/spec/opensearchrss/1.0/'

xmlns:gsx='http://schemas.google.com/spreadsheets/2006/extended'>

<id>https://spreadsheets.google.com/feeds/list/19jYetE4-k5bOaYBsdaw-

l_TLO0eVEFWB7ZRIaqhXoAg/1/public/basic</id>

<updated>2014-09-15T15:11:34.196Z</updated>

…

…

…

…

<entry>

https://spreadsheets.google.com/feeds/list/19jYetE4-k5bOaYBsdaw-l_TLO0eVEFWB7ZRIaqhXoAg/1/public/basic%3c/id%3e%20%3cupdated%3e2014-09-15T15:11:34.196Z%3c/updated
https://spreadsheets.google.com/feeds/list/19jYetE4-k5bOaYBsdaw-l_TLO0eVEFWB7ZRIaqhXoAg/1/public/basic%3c/id%3e%20%3cupdated%3e2014-09-15T15:11:34.196Z%3c/updated
https://spreadsheets.google.com/feeds/list/19jYetE4-k5bOaYBsdaw-l_TLO0eVEFWB7ZRIaqhXoAg/1/public/basic%3c/id%3e%20%3cupdated%3e2014-09-15T15:11:34.196Z%3c/updated

INVESTU – J—H----- 63

<id>https://spreadsheets.google.com/feeds/list/19jYetE4-k5bOaYBsdaw-

l_TLO0eVEFWB7ZRIaqhXoAg/1/public/basic/cu76f</id>

<updated>2014-09-15T15:11:34.196Z</updated>

<category scheme='http://schemas.google.com/spreadsheets/2006'

term='http://schemas.google.com/spreadsheets/2006#list'/>

<title type='text'>BARC.L</title>

<content type='text'>name: BARCLAYS, price: 208, change: -1.7</content>

<link rel='self' type='application/atom+xml'

href='https://spreadsheets.google.com/feeds/list/19jYetE4-k5bOaYBsdaw-

l_TLO0eVEFWB7ZRIaqhXoAg/1/public/basic/cu76f'/>

</entry>

</feed>

This XML has one node called ‘entry’. Inside ‘entry’, there are 5 elements. The 4th element contains the
information we need:

<content type='text'>name: BARCLAYS, price: 208, change: -1.7</content>

Therefore to extract this string, we need to get the element from the 4th child of the node ‘entry’. This can
be done through this code:

StockInfo = node.ChildNodes.Item(4).InnerText

We have now successfully extracted the information from the XML and assigned it to the variable
StockInfo. StockInfo now has this value:

name: BARCLAYS, price: 208, change: -1.7

https://spreadsheets.google.com/feeds/list/19jYetE4-k5bOaYBsdaw-l_TLO0eVEFWB7ZRIaqhXoAg/1/public/basic/cu76f%3c/id%3e%20%3cupdated%3e2014-09-15T15:11:34.196Z%3c/updated
https://spreadsheets.google.com/feeds/list/19jYetE4-k5bOaYBsdaw-l_TLO0eVEFWB7ZRIaqhXoAg/1/public/basic/cu76f%3c/id%3e%20%3cupdated%3e2014-09-15T15:11:34.196Z%3c/updated
https://spreadsheets.google.com/feeds/list/19jYetE4-k5bOaYBsdaw-l_TLO0eVEFWB7ZRIaqhXoAg/1/public/basic/cu76f%3c/id%3e%20%3cupdated%3e2014-09-15T15:11:34.196Z%3c/updated
https://spreadsheets.google.com/feeds/list/19jYetE4-k5bOaYBsdaw-l_TLO0eVEFWB7ZRIaqhXoAg/1/public/basic/cu76f%3c/id%3e%20%3cupdated%3e2014-09-15T15:11:34.196Z%3c/updated

INVESTU – J—H----- 64

 FetchStockInfo – MainForm - Investu Development 1

FetchStockDetails fetches XML data from an online feed, and then searches through the nodes to find

relevant information.

Try

Catch ErrorVariable As Exception
 Timer1.Stop()
 MsgBox(ErrorVariable.ToString())
End Try

The code in this sub-routine is enclosed in a try/catch loop to avoid crashes. The code could potentially

throw an exception if the sub-routine tries to fetch information from an invalid link, or if a node is searched

that doesn’t exist. If an exception is caught, the timer stops. This is to avoid a stack overflow error. A

message box is then displayed detailing the error variable for debugging purposes.

Dim document As XmlDocument
Dim nodelist As XmlNodeList
Dim node As XmlNode
document = New XmlDocument()

Before fetching the XML data, a variable called ‘document’ is created. Its data type is XMLDocumentvi,

and a new instance of it is created. A variable called ‘nodelist’ is also created, which will be used to hold a

list of all the nodes from the file, and ‘node’ which will be used to hold each individual node.

document.Load("https://spreadsheets.google.com/feeds/list/0AhySzEddwIC1dEtpWF9hQUhCWU

RZNEViUmpUeVgwdGc/1/public/basic?sq=symbol=" & StockSymbol)

Sub FetchStockDetails(ByVal StockSymbol As String)
 Try
 Dim Document As XmlDocument
 Dim Nodelist As XmlNodeList
 Dim Node As XmlNode

 Document = New XmlDocument()

Document.Load("https://spreadsheets.google.com/feeds/list/0AhySzEddwIC1dEtpWF9hQU
hCWURZNEViUmpUeVgwdGc/1/public/basic?sq=symbol=" & StockSymbol)

 Nodelist = Document.GetElementsByTagName("entry")

 For Each Node In Nodelist
 StockInfo = Node.ChildNodes.Item(4).InnerText
 Next

 Catch ErrorVariable As Exception
 Timer1.Stop()
 MsgBox(ErrorVariable.ToString())
 End Try
 End Sub

INVESTU – J—H----- 65

The simulation loads in the XML data from a link to a spreadsheet. This spreadsheet holds all of the

information for every stock in the FTSE 100. This spreadsheet is broken down into more detail in the

analysis section. At the end of the link, the stock symbol being queried is appended to the end. This

means the XML data loaded is only information relevant to the stock selected.

nodelist = document.GetElementsByTagName("entry")

A list of nodes is constructed, which scans the XML and retrieves all nodes where the tag name is ‘entry’.

For Each node In nodelist
 StockInfo = node.ChildNodes.Item(4).InnerText
Next

This For-Loop contains the code for extracting the stock information, discussed in the previous section,

FetchStockInfo – Development.

The XML file for each stock is structured in the same way. Because of this, we always know where to find

the information we want, as it will always be in the same place. We know that if a node list is created that

indexes every element where the tag name is ‘entry’, then there will be a single node in the list, and the

4th child node of that node will contain the relevant stock information needed for the simulation. Because

we know that this is the same for each XML document, we can hard-code the pathway to this information.

There only exists one node in the node list, and so it may seem redundant to use a For-loop to be used,

however this allows for expansion later, if more information needs to be extracted from different nodes

within the XML.

INVESTU – J—H----- 66

SplitStockInfo – MainForm - Investu Development 1

When FetchStockInfo is called, a string is returned, in the following format:

name: BARCLAYS, price: 208, change: -1.7

In the XML this is represented as text and as such it is not able to be broken down any further simply by

selecting child nodes; information must be extracted by splitting the string. The purpose of SplitStockInfo

is to allow the user to pass a string, StockInfo, and the information they wish to have extracted, e.g. Price,

Change or Name, and then for the function to return the correct information.

Function SplitStockInfo(ByVal StockInfo As String, ByVal Identifier1 As String)

The two arguments passed to SplitStockInfo are StockInfo - a string containing the information, and

‘Identifier1’ which tells the function which part of the string the program needs to extract. The 3 supported

values for Identifier1 are price, name and change.

Dim ArrayList() As String StockInfo.Split(":")
Dim SubArrayList() As String = ArrayList(1).Split(",")
Dim SubArrayList1() As String = ArrayList(2).Split(",")

Dim ExtractedValue As String

Function splitStockInfo(ByVal StockInfo As String, ByVal Identifier1 As String)

 Dim ArrayList() As String = stockInfo.Split(":")
 Dim SubArrayList() As String = ArrayList(1).Split(",")
 Dim SubArrayList1() As String = ArrayList(2).Split(",")
 Dim StockChange As Decimal = 0
 Dim StockPrice As Decimal = 0
 Dim StockName As String = 0

 Select Case Identifier1

 Case "name"
 StockName = SubArrayList(0)
 Return StockName

 Case "price"
 StockPrice = SubArrayList1(0)
 Return StockPrice

 Case "change"
 StockChange = ArrayList(3)
 Return StockChange

 Case Else
 Return "ERROR RETREIVING INFORMATION"

 End Select

 End Function

INVESTU – J—H----- 67

name: BARCLAYS, price: 208, change: -1.7

The above string is an example of StockInfo. The first line of code (Dim ArrayList() As String
StockInfo.Split(":"))’ uses VB’s built in .split function to split this string where there is a colon, and

puts the resultant items into an array. In this case, the array would look as follows:

Array index Value

0 Name

1 BARCLAYS, price

2 208, change

3 -1.7

The next line (Dim SubArrayList() As String = ArrayList(1).Split(",")) performs another split,

and puts the items into a new array called SubArrayList(). This time, the split happens where there is a
comma, and the string being split is not the whole string, but a part of the string that is found in
ArrayList(1). In this case, that would be

: BARCLAYS, price

Splitting this string where there is an apostrophe would create an array with values as follows:

Array index Value

0 BARCLAYS

1 price

We have now successfully extracted the name of the stock from the XML file and put it into the array
SubArrayList() at index value 0.

Now we need to do the same for price and change, the other two parameters being extracted.

The third line of code (Dim SubArrayList1() As String = ArrayList(2).Split(",")) does the

same as the second line, but instead of splitting the string in ArrayList(1), it splits the string in ArrayList(2).
The value in ArrayList(2) in this case is as follows:

208, change

Splitting this value where there is an apostrophe would result in an array with the following values.

INVESTU – J—H----- 68

Array index Value

0 208

1 change

We have therefore extracted all 3 pieces of required information:

Name – stored in SubArrayList(0)
Price – stored in SubArrayList1(0)
Change – stored in ArrayList(3)

Select Case Identifier1

 Case "name"
 ExtractedValue = SubArrayList(0)

 Case "price"
 ExtractedValue = SubArrayList1(0)

 Case "change"
 ExtractedValue = ArrayList(3)

 Case Else
 Return "Invalid Identifier"

End Select

Return ExtractedValue

Here a Select Case is used to identify which information needs to be returned, and then the value of
ExtractedValue is set to the corresponding value – for example if the value of ‘Identifier1’ is “change”,
then the value of ‘ExtractedValue’ is set to ArrayList(3), which is where the value of change is stored, as
discussed previously.
The value of ExtractedValue is then returned.

INVESTU – J—H----- 69

PlotNewPoint – MainForm - Investu Development 1

PlotNewPoint is a sub-routine that adds a new points to the series, which in turn changes the appearence
of the graph. This is done simply through the Points.Add feature of VB, which takes an X and a Y co-
ordinate as arguments, and then creates a new point.

ClosePositionsButton – MainForm - Investu Development 1

As the user is able to buy stock in this development of the simulation, it only makes sense that they have
the ability to sell stock and have their portfolio updated. This sub-routine performs the sale of stock, and
updates the users balance, as well as removing the stock from the users’ portfolio.

 Private Sub ClosePositionsButton_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles ClosePositionsButton.Click

 Dim PositionIndex As String =
OpenPositionsListBox.SelectedIndex

 If OpenPositionsListBox.CheckedItems.Count > 0 Then

 FetchStockDetails(OpenPositions(PositionIndex).stockSymbol)

 UpdateBalance(Balance, splitStockInfo(StockInfo, "price"),
OpenPositions(PositionIndex).stockQuantity)

 OpenPositions.RemoveAt(PositionIndex)

 UpdatePortfolio()

 Else

 MsgBox("Please select the position you'd like to close.")
 End If

 Catch ErrorVariable As Exception
 MsgBox(ex.ToString())
 End Try
 End Sub

Sub PlotNewPoint(ByVal XValue As String, ByVal YValue As Decimal)
 s.Points.AddXY(XValue, YValue)
End Sub

INVESTU – J—H----- 70

Try

…

Catch ErrorVariable As Exception
 MsgBox(ex.ToString())
End Try

This sub-routine has a try-catch in it to catch exceptions and display the error message when a run-time
error occurs. These could occur if the user manages to try and sell a stock they don’t have, or if there is
an out-of-bounds exception.

Dim PositionIndex As String = OpenPositionsListBox.SelectedIndex

In the simulation, all of the users open positions are displayed in a box. The user can select an open

position from this box to sell. This sub-routine works on the basis that the index value of item in the box is

the same as the index value of the open position in the OpenPositions() list. This line of code fetches this

index value and assigns it a name, ‘PositionIndex’ which is useful for reducing the visual complexity of

this sub-routine.

If OpenPositionsListBox.CheckedItems.Count > 0 Then

…

Else
 MsgBox("Please select the position you'd like to close.")
End If

The code inside this conditional will only execute when two conditions are met. These conditions ensure
a) that there exists an item in the list box, and b) of the items in the box, one of them is ticked. This can
be condensed into one condition: OpenPositionsListBox.CheckedItems.Count > 0, because in

order to have a ticked item in the list box it implies that an item exists to tick. If this condition is met then
the following code executes.

FetchStockDetails(OpenPositions(PositionIndex).stockSymbol)

FetchStockDetails() is a sub-routine discussed earlier in Development 1. In this sub-routine, it is called to
find out the value of the stock being sold. This is crucial as the whole concept of the simulation relies on
the fact users can buy and sell stocks for different prices. The argument passed to FetchStockDetails() is
the StockSymbol, which in this case is stored in the list OpenPositions(). ‘PositionIndex’ here refers to the
index value of the stock being sold. Which this information we can find the stock symbol of the open
position being closed, by retrieving the .StockSymbol attribute from OpenPositions, at list index
PositionIndex. This then sets the value of StockInfo, a global variable discussed earlier, to the string
containing the information about that stock. This can then be split to get the price.

INVESTU – J—H----- 71

UpdateBalance(Balance, splitStockInfo(StockInfo, "price"),
OpenPositions(PositionIndex).stockQuantity)

UpdateBalance is a sub routine that takes 3 arguments: the users balance, and the price and quantity of
the stocks being sold, and then updates the balance buy performing a price * quantity multiplication and
adding the result onto the balance.

OpenPositions.RemoveAt(PositionIndex)

OpenPositions() is the list holding all of the users currently open positions. This list is then displayed in a
list box. To remove an item from the user’s portfolio, and then from the list box, the item needs to be
removed from OpenPositions() list. Because the list box displaying the open positions and the list holding
the open positions both have the same index value, it is possible to use PositionIndex as the index value
to remove at in OpenPositions, which will in turn allow the position to be removed from the list box
displaying the open positions.
To do this, ‘.RemoveAt’ is used, which removes an item from a list using an index value. The index value
in this case is PositionIndex, defined earlier in the sub-routine.

UpdatePortfolio()

Calling update portfolio will update the visual display in the program that displays the open positions the
user has.

INVESTU – J—H----- 72

UpdatePortfolio – MainForm - Investu Development 1

OpenPositionsListBox.Items.Clear()

In order to keep the index values of the list box and the OpenPositions() list the same, the list box
containaing the open positions has to first be wiped, and then the content re-written, so that the index
values continues to match up.

For l = 0 To OpenPositions.Count - 1
 OpenPositionsListBox.Items.Add(OpenPositions(l).stockSymbol & " - " &
OpenPositions(l).stockQuantity & " - " & OpenPositions(l).stockValue & " - " &
OpenPositions(l).UniqueID & vbNewLine)
Next

This for-loop simply lopops through all of the open positions and adds the details to the list box, so that
the use has a graphical representation fo the positions they have open in the simualation.

Sub UpdatePortfolio()

 OpenPositionsListBox.Items.Clear()

 For l = 0 To OpenPositions.Count - 1
 OpenPositionsListBox.Items.Add(OpenPositions(l).stockSymbol & " - " &
OpenPositions(l).stockQuantity & " - " & OpenPositions(l).stockValue & " - " &
OpenPositions(l).UniqueID & vbNewLine)
 Next

 End Sub

INVESTU – J—H----- 73

UpdateBalance – MainForm - Investu Development 1

This sub-routine is called in ClosePositions and is responsible for calculating the users new balance. The
sub-routine simply performs a multiplication followed by an addition to calculate the new balance, and
then updates the visual display to reflect the new balance.

Sub UpdateBalance(ByVal Balance As Integer, ByVal Price As Integer, ByVal
Quantity As Integer)

 Balance = Balance + (Quantity * Price)
 BalanceBox.Text = "£" & Balance / 100

End Sub

INVESTU – J—H----- 74

BuyForm - Investu Development 1

When the user wishes to open a position on a stock, they enter the buy form. BuyForm is a display that

allows the users to see the stock name and share price, and then select a quantity to buy.

Global Variables – BuyForm - Investu Development 1

The variables declared here are Quantity, Price, StockSymbol and StockName. These values will be used

throught BuyForm and so are declared globally here, however in future versions will most likely be

defined locally and passed to where they are needed instead.

The values for the these variables are fetched from MainForm, excluding Quantity which is determined by

the user in BuyForm. MainForm will be open in the background and so accessible to retrieve information

from.

Public Class BuyForm

 Dim Quantity As Integer
 Dim Price As Decimal = MainForm.PriceBox.Text
 Dim StockSymbol As String = MainForm.SelectStockComboBox.SelectedItem
 Dim StockName As String = MainForm.NameBox.Text

INVESTU – J—H----- 75

 BuyForm_Load – BuyForm - Investu Development 1

The code here is self explanatory – it mostly deals with the visual appearence of BuyForm.

Quantity is set to 1, as it may cause unexpected results if the user tries to open a position on a stock with

a share quantity of 0. The value in the total price box is converted to pounds and displayed rounded to 2

decimal places.

Values are cleared incase there exists values remaining from the last time the form was opened. The

values of the StockDisplayBox and StockPriceBox are set to StockName and Price respectively, in order

to show the user the stock name and price of the stock they are currently opening a position on.

 Private Sub BuyForm_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

 Quantity = 1

 QuantityBox.Text = Quantity
 PriceBox.Text = "£" & Math.Round((Price * Quantity) / 100, 2)

 StockDisplayBox.Clear()
 StockPriceBox.Clear()

 StockDisplayBox.Text = Stockname
 StockPriceBox.Text = Price
 End Sub

INVESTU – J—H----- 76

TrackBar_Scroll – BuyForm - Investu Development 1

This sub-routine has ‘Handles QuantitySlider.Scroll’ appended in its declaration which means it is called

when QuantitySlider is scrolled left or right. QuantitySlider is a track bar in BuyForm that will be used to

determine the number of shares the user wishes to buy.

QuantitySlider.Maximum = Int(MainForm.Balance / Price)

The maximum value the track bar will scroll to is set to the maximum number of shares the user can buy
with their current balance, which is worked out by truncating the value that is a result of dividing their
balance by the current price.

Quantity = QuantitySlider.Value
QuantityBox.Text = Quantity
PriceBox.Text = "£" & Math.Round((Price * Quantity) / 100, 2)

When the track bar is scrolled, these lines of code update the value of Quantity to the current value of the

track bar, and then set the QuantityBox value to quantity, so the user can see the number of shares they

have currently selected. The total price of the purchase is then updated, using the Price * Quantity

calculation

 Private Sub TrackBar1_Scroll(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles QuantitySlider.Scroll

 QuantitySlider.Maximum = Int(MainForm.Balance / Price)
 Quantity = QuantitySlider.Value
 QuantityBox.Text = Quantity
 PriceBox.Text = "£" & Math.Round((Price * Quantity) / 100, 2)

 End Sub

INVESTU – J—H----- 77

BuyButton_Click – BuyForm - Investu Development 1

The BuyButton in BuyForm is the button the user uses to enter a new position, after they have selected a

quantity using the track bar. This button executes code to add the new position to a list of all currently

open positions, which is then added to the portfolio box in the simulation, where the user can view all of

their currently open positions.

If MainForm.Balance > (Quantity * Price) Then
...
Else

MsgBox("You don't have enough money to buy that many " & Stockname & "
shares.")

End If

This conditional is used as another layer of error checking, in case the other counter measures were

ineffective. The condition simply checks that the users balance is greater than the cost of the position

they are trying to open.

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

If MainForm.Balance > (Quantity * Price) Then

MainForm.OpenPositions.Add(New StockAttributes With {.stockName =

Stockname, .stockSymbol = StockSymbol, .stockValue = Price, .stockQuantity
= Quantity})

 MainForm.Balance = MainForm.Balance - (QuantityBox.Text *
StockPriceBox.Text)
 MainForm.BalanceBox.Text = "£" & MainForm.Balance / 100
 MainForm.UpdatePortfolio()

Me.Close()

Else

 MsgBox("You don't have enough money to buy that many " & Stockname &
" shares.")

 End If

 End Sub

End Class

INVESTU – J—H----- 78

MainForm.OpenPositions.Add(New StockAttributes With {.stockName =
Stockname, .stockSymbol = StockSymbol, .stockValue = Price, .stockQuantity =
Quantity})

Once the validation has been passed, a new position is opened. This is done using .Add on the

‘OpenPositions’ list in MainForm. The 4 attributes of the list corrospond to the 4 variables declared earlier

in BuyForm – StockName, StockSymbol, StockValue and StockQuantity.

MainForm.Balance = MainForm.Balance - (QuantityBox.Text * PriceBox.Text)
MainForm.BalanceBox.Text = "£" & MainForm.Balance / 100
MainForm.UpdatePortfolio()

This code simply updates the balance and then sets it in MainForm, and then calls UpdatePortfolio to

erase the current contents of the portfolio display box and populate it with the users new portfolio.

INVESTU – J—H----- 79

Testing 1 - Investu Simulation – Development 1

Every sub-routine has been tested individually to ensure it works independently, however these tests

have not been shown. The tests displayed are tests that show multiple sub-routines and functions

working together to produce the desired outcome.

Test Objective Evidence Obje

ctive

s

met?

Show simulation

loads all of the

stock symbols in

the Symbols()

array to the

program, and they

are selectable

When the user loads the simulation, the user is presented with the following

user interface.

In the top left corner of the simulation is a drop down box labelled ‘Select

Stock’. When the user selects the drop down menu, a list of stock symbols is

presented. These symbols are those found in the Symbols() array discussed

earlier in Development 1. Every stock symbol hard-coded into the Symbols()

array, are present here in the drop-

down menu.

This indicates that the

requirements set out in the test

description have been met and the

test has therefore been passed.

INVESTU – J—H----- 80

Show when stock

symbols are

selected, the

simulation fetches

the information

related to that

stock from the

internet

Upon selecting a stock symbol, in this case ‘BARC.L’, the information for the

stock is loaded correctly. This can be tested by corroborating the information

with another source, such as Googles’ built in share pricing feature.

(note the price of Barclays’ shares changed between taking the above

screenshot and the screenshot below)

In the above screenshot we can see that the price displayed in both Google

and the Investu simulation is 214.75.

This indicates that the requirements set out in the test description have been

met and the test has therefore been passed.

INVESTU – J—H----- 81

Show simulation

structures a graph

and styles it on

selection of stock

When a symbol is selected this graph is created. This graph was created

when loading in BARC.L, when the price was 216.6. The graph scale goes

up to 219.6 and goes down to 213.6, which is correct as the value selected in

GraphScaleComboBox (bottom of the graph) is 3.

 There exists only one point, which is at 216.6 at the time 22:45:20. This

graph only has one point because it has only just been loaded, and so not

enough time has elapsed for any points to have been plotted, except the

point plotted immediately after the graph is created.

This indicates that the requirements set out in the test description have been

met and the test has therefore been passed.

INVESTU – J—H----- 82

Show there is an

interval between

plotting of graph

points determined

by the value

selected by the

user in

UpdateIntervalCo

mboBox

This screenshot was taken just over 10 seconds after a stock symbol was

selected. As indicated by the 3 red circles drawn on, there are 3 points

plotted in the graph. The first was plotted immediately as the graph was

loaded. From the scale on the X axis, we can see that the next point was

plotted about 5 seconds later, at the third point was plotted exactly 10

seconds after the graph was loaded into the simulation.

This data is in line with what is expected, as the update interval at the bottom

of the graph (combo box on the left) is set to 5.

This indicates that the requirements set out in the test description have been

met and the test has therefore been passed.

INVESTU – J—H----- 83

Show simulation

populates graph

with points, with

the X axis

measured in time

and the Y axis

measured in stock

price. The price

and time of the

points is accurate.

Above is the result of selecting the Barclays stock and leaving the program to

run for 20 minutes. Each point represents 5 seconds passed. This graph

therefore contains 400 points ((20*60)/5 = 240)

This indicates that the requirements set out in the test description have been

met and the test has therefore been passed.

Show that the

user can

manipulate the

graph scale in

order to zoom

in/out of the graph

INVESTU – J—H----- 84

Above are two screenshots of the Y-axis of the graph. The screenshot on the

left shows the graph when the GraphScaleComboBox value is set to 0.5. As

the price of the stock is currently 216.6 when this screenshot was taken, this

means the graph extends to 216.6 + 0.5 and 216.6 - 0.5. This has the effect

of zooming in to the graph, so that changes in price look visually larger and

are easier to see.

In the right-hand screenshot, the value of GraphScaleComboBox is set to 5,

which means the graph is effectively zoomed out. This scale is able to be

changed during run-time allowing the user to adjust how they view the graph.

This indicates that the requirements set out in the test description have been

met and the test has therefore been passed.

INVESTU – J—H----- 85

Show that

BuyForm loads

and displays

information

related to the

stock currently

selected in the

simulation

INVESTU – J—H----- 86

When clicking on the ‘BUY’ button in the program, another form appears this

form is BuyForm. The form contains the correct name for the stock currently

being looked at, which is BARCLAYS in this case. The current price of one

Barclays share is also displayed, which in this case is set to 216.6. The initial

quantity is set to 1, which is the minimum the bar will slide to. The second

price box shows the price displayed in pounds, rounded to the nearest

penny.

This indicates that the requirements set out in the test description have been

met and the test has therefore been passed.

Show that the

BuyForm allows

users to select the

number of shares

to buy, and that

the price updates

dynamically

This screenshot shows

the initial display of the

form upon load. The

quantity is set to 1 and the

price has correctly been

converted from pence to

pounds.

INVESTU – J—H----- 87

Sliding the scroll bar about

1/3 of the way causes the

quantity to update. In this

case the quantity is set to

165,917. The price of one

share is currently to 216.6.

The total price should

therefore be displayed as

(165917 * 216.6)/100 =

359376.222 =

£359,376.22 – which it is.

When the scroll bar is set to

its maximum value, the

quantity is 461665, which is

the maximum value that

can be bought with a

balance of £1,000,000 –

the value of balance

defined in the development

of the simulation.

This indicates that the requirements set out in the test description have been

met and the test has therefore been passed.

INVESTU – J—H----- 88

Show the user’s

buy registers and

is displayed in the

portfolio box, and

the balance is

updated correctly

NOTE: In this test, the

value of balance was set

to 10000000, which is the

same as £100,000,

instead of £1,000,000 as

in the previous test.

In this screenshot, a buy

offer is being created.

The scroll bar is set to its

maximum, and the total price is therefore just under £100,000.

When the button labelled ‘Open New Position’ is then selected, the selected

quantity of stock is bought. ‘Current Balance’ at the bottom is now £1.75.

This is because a single share of Barclays stock costs £2.14, and so £1.75 is

the remainder left over that is less than the minimum amount required to buy

one Barclays share.

INVESTU – J—H----- 89

The new open position is then added to the portfolio section of the

simulation. The new entry displays ‘BARCLAYS – 46750 – 213.9’ Which

reflects the stock name, quantity bought, and buy price respectively. This

format is perhaps not the most user-friendly, however this will be addressed

in the following developments, as this development simply serves as proof of

concept for the simulation.

The above screenshot shows another portfolio. Instead of simply buying the

maximum amount of Barclays stock possible with the balance, this portfolio

represents a diversified portfolio, with some money remaining in the users

balance.

During this test, when selecting the ADN.L symbol in an attempt to add

shares to the portfolio, the program crashed and threw the following error:

INVESTU – J—H----- 90

The simulation was attempting to retrieve some information about the stock,

however this resulted in a crash as the split of the information resulted in

‘#N/A’ instead of a number as would be expected. As ‘#N/A’ is a string and

not a decimal, this crashed the program.

This crash was caused because there existed no stock information for the

ADN.L stock. This indicates that the company that corresponds to the ADN.L

symbol is no longer indexed in the FTSE 100, and therefore it is not possible

to retrieve information regarding that specific stock.

Show the user is

able to close open

positions and that

the simulation

registers the sell

action, updating

the users balance

and portfolio

Selecting Barclays stock and buying the maxiumum amount results in the

screensshot above. The user has one open position in their portfolio. The

open position has been selected, as indicated by the tick in the box next to

the position.

INVESTU – J—H----- 91

Here, the ‘Close Position’ button has been clicked, and the position has been

closed. The balance has returned close to £100,000, however not exactly. As

the value was the same when the position was opened and closed (214.05 in

both case), this value should be exactly £100,000.

The above graph shows the price during this transaction. As is visible, the

price of the stock did not change over the running of the program. This

means that the balance should have returned to £100,000. However this was

not that case.

INVESTU – J—H----- 92

This indicates that there exists a rounding error in the simualtion during the

sell phase. This bug can be fixed by adding more accuracy to the stored

decimals, and through avoiding truncation of stored number.

This test has shown that although the feature works in the most part, there

exists a bug that needs to be fixed in order for the simulation to have a

smooth user experience.

INVESTU – J—H----- 93

Testing 1 Findings – Investu Simulation - Development 1

From the test results above, we can see that the first development of the Investu simulation is working

largely as expected, which indicates that the simulation has a good foundation to be built upon.

There does appear to be, however, two unexpected results in the last two tests;

1) The first unexpected result appears in test 9. When one of the stock symbols is selected from the

drop-down list, the program crashes. After looking into this error, it appears to be because this

company has fallen out of the FTSE 100 and is therefore their stock symbol is no longer

supported by the GOOGLEFINANCE function in google sheets. This causes the string ‘#N/A’ to

be passed to the SplitStock function as he value for ‘Change’ which is expected to be a decimal

value. Passing a string to a function where a decimal is expected creates an error.

2) The second unexpected result occurs when the user closes a position. Even when the user buys

and sells at the same price, the end balance is not the same as the start balance, which indicates

there is some sort of rounding error in the simulation. This could be because of a data type being

stored as an integer instead of a decimal.

INVESTU – J—H----- 94

Fixing Errors - Investu Development 1

Error 1

In order to fix this error, a validation check needs to be added to make sure the value for ‘change’ is not

‘#N/A’. This was the code originally;

Function splitStockInfo(ByVal stockInfo As String, ByVal identifier1 As String)

 Dim ArrayList() As String = stockInfo.Split(":")
 Dim SubArrayList() As String = ArrayList(1).Split(",")
 Dim SubArrayList1() As String = ArrayList(2).Split(",")
 Dim StockChange As Decimal = 0
 Dim StockPrice As Decimal = 0
 Dim StockName As String = 0

 Select Case identifier1

 Case "name"

 StockName = SubArrayList(0)
 Return StockName

 Case "price"
 StockPrice = SubArrayList1(0)
 Return StockPrice

 Case "change"
 StockChange = ArrayList(3)
 Return StockChange

 Case Else
 Return "?"

 End Select

 End Function

INVESTU – J—H----- 95

And the following is the new code;

The concept remains the same; the function uses a select-case to find and return the correct information,

however this time there is a conditional on each case to check that the value is not ‘#N/A’. We know if

there is an error, the value will always be ‘#N/A’, so it is safe to hard wire this value into the condition.

Also added is the use of the ‘Trim’ function, which removes any leading or trailing whitespace on the

values. This is a precautionary addition just incase there happens to be whitespace that affects how data

is displayed in future developments.

Function SplitStockInfo(ByVal StringToSplit As String, ByVal DetailsToExtract As String)

 Dim ExtractedDetails As String = ""

 Dim ArrayList() As String = StringToSplit.Split(":")
 Dim SubArrayList() As String = ArrayList(1).Split(",")
 Dim SubArrayList1() As String = ArrayList(2).Split(",")

 Select Case DetailsToExtract

 Case "Name"
 If Trim(SubArrayList(0)) = "#N/A" Then
 ExtractedDetails = "ERROR"
 Else
 ExtractedDetails = Trim(SubArrayList(0))
 End If

 Case "Price"
 If Trim(SubArrayList1(0)) = "#N/A" Then
 ExtractedDetails = "ERROR"
 Else
 ExtractedDetails = Trim(SubArrayList1(0))
 End If

 Case "Change"
 If Trim(ArrayList(3)) = "#N/A" Then
 ExtractedDetails = "ERROR"
 Else
 ExtractedDetails = Trim(ArrayList(3))
 End If

 End Select

 Return ExtractedDetails
 End Function

INVESTU – J—H----- 96

Error 2

This error occured because of the ‘UpdateBalance’ sub-routine, which updates the users balance after a

position is closed.

By updating the UpdateBalance sub-routine to not accept a balance argument, and instead use the

balance variable, and changing the data type of the price from integer to decimal, the simulation now

accurately updates the balance to the correct value after a position is closed.

Sub UpdateBalance(ByVal Balance As Integer, ByVal Price As Integer, ByVal Quantity
As Integer)

 Balance = Balance + (Quantity * Price)
 BalanceBox.Text = "£" & Balance / 100

End Sub

Sub UpdateBalance(ByVal Price As Decimal, ByVal Quantity As Integer)

 Balance = Balance + (Quantity * Price)
 BalanceBox.Text = "£" & Balance / 100

 End Sub

INVESTU – J—H----- 97

Testing 2 - Investu Development 1

Show the

user is able to

close open

positions and

that the

simulation

registers the

sell action,

updating the

users balance

and portfolio

INVESTU – J—H----- 98

This sequence of three screenshots shows a successful buy and sell of a

quantity of stock.

1) Before any trade is made, the balance is £100,000

2) After the maximum possible number of shares is bought, the user is left

with £1.26

3) After the position is closed, the balance returns to exactly £100,000

(trailing 0’s left to show accuracy) and the position is removed from the

list of open positions.

INVESTU – J—H----- 99

Show the

user’s buy

registers and

is displayed in

the portfolio

box, and the

balance is

updated

correctly.

Show that no

errors occur

even when

querying

companies no

longer in the

FTSE 100.

Previously, clicking on this option threw an error. After the changes to the code,

the value of any value that is returned as ‘#N/A’ will be set to ‘ERROR’, and the

simulation will run as expected.

INVESTU – J—H----- 100

Feedback #3 – Client – Investu Development 1

Development 1 provides the functionality for the simulation to perform at its most basic level. To ensure

that the vision for this program is still on track and in line with that of the client and users, it is important to

stay in communication. The following interview therefore took place to ensure that the final product of

Development 1 is as expected and performing as intended, in the mind of the end user.

Ben, a student participating in the Student Investor Challenge, was given access to Development 1 in

order to test the simulation. The following is a dialogue that took place afterwards. (dialogue editted for

brevity)

“Ben – bearing in mind that this is an initial development of the simulation, what do you think of

Investu so far?”

“After having a little look around I really like it. It’s kind of similar to the SIC software but it feels a lot

easier to use and looks a lot better. I really like the graph on the side, and the fact you can instantly fetch

price information for each stock, with a single click. That makes it really clear.”

“Have you tried trading on the simulation?”

“Yes – I’ve been buying and selling for a few minutes and it’s been really interesting – the fact there are

no fees yet means you can invest in a company and then watch the graph until the price changes and

then sell it instantly – it’s really fun anticipating whether or not it’ll rise or fall. I haven’t been able to profit

much because the prices are only changing by a tiny bit eachchange, and I’ve only been using it a few

minutes so there hasn’t really been any noticeable price changes. To see any real returns I reckon you’d

have to put your whole balance in and leave it a few minutes, or make an investment and leave it for

hours or a few days. It’s a shame that everything resets after closing it.”

“What are you looking forward to in the future developments?”

“Well being able to keep progress would be great – I’m sure when thats possible it’ll be really fun to try

and keep a running progress over a few weeks. It’s also going to be a lot easier to invest when theres

some help choosing what to invest in, stuff like news, because at the moment it’s a bit of a random guess.

The graph is also good but it doesn’t show much at the moment. It only starts showing anything from the

time you load the program. It will be much clearer when it shows a bigger picture of the price of the

stocks.”

INVESTU – J—H----- 101

Final Conclusion – Investu Development 1

Development 1 has successfully fulfilled some of the basic criteria set out by the client, and is in a good

position to be build upon in order to fulfil the remaining criteria required. Fundamentally, the simualtion

now does what is needed, however without the features needed for the program to be a viable solution.

In the analysis of this simulation, a feature list and an objectives list was created using feedback from the

client and the user. Now that development 1 has been implemented, we can see how many of this criteria

have been met, and the goals for the second development of the program.

(The items highlighted in green have been successfully implemented into development 1, as shown in the

development 1 testing phase in the previous section)

• Ability to create and login to accounts (client)

• Ability to join and trade on a team account (client)

• Ability for users to be designated as admins (client)

• Ability for account progress on team and personal accounts to be saved between sessions

(inferred from client and user)

• Ability for admins to view teams list (inferred from client)

• Ability for admins to view team details and progress (inferred from client)

• Ability to view real-time information for all FTSE 100 stocks (client and user)

• Ability to select an amount of stocks and buy that amount using an up to date virtual balance, at

real current price (client/user)

• Display for all stocks currently held in portfolio (client/SIC)

• Ability to sell stocks in portfolio at real current price (client)

• Graphs to display current day price trends of all stocks (user)

• Graph to show all time price changes of all stocks (inferred from user)

• Ability to create price alerts and be notified when stock reaches current price (inferred from user)

• Interface allowing users to see all current alerts on their account (inferred from user)

• Interface allowing user to see entire trade history (SIC)

• Interface allowing user to see all stocks in the FTSE 100 in a single screen, with details such as

price (SIC)

•

• Notes section displayed in trade history and portfolio with reasons for trade decision (user)

In the next development of the program the aim is to successfully connect the database to the program,

allowing for the storage of data related to the FTSE 100 and the user account. This will allow for a login

system, as well as a teams system and the ability to save information relating to these two features.

Furthermore, once the database is connected, it will be possible to begin collecting stock market data and

storing it. This will require a small, additional program, that will operate on a server 24/7 in order to collect

data.

INVESTU – J—H----- 102

Develop

ment 2

INVESTU – J—H----- 103

Database – InvestuServerProgram - Development 2

The server program will output data into a database. This database will be called ‘StockInfoDB’ and will

be in the MDB file format.

The first table in the database will be called ‘tblStockPriceHistory’. This table will store all of the price

history for each of the stock symbols in the FTSE100.

The following is a screenshot of the entity relationship diagram for the database. Currently there is only

two tables, which are not linked, and so no relationships can be drawn.

Inside the main table, the format is as follows: (Some sample data has been written to the table)

INVESTU – J—H----- 104

Investu Server Program – Version 1 – Development 2

In addition to the main simulation, Development 2 brings about the need for an additional program. This

program will be called InvestuServerProgram, and will run 24/7 on a server inside the school building.

The purpose of this program is to collect stock market data for use in the simulation. By connecting the

program to a database, information can be gathered and stored, which can then be used to extend

information provided to the user in the main simulation, such as price history over the last X hours. Some

other features proposed in the initial analysis will also require this server program; the alerts system for

example, which will alert the users to when a stock reaches a certain price, even when they are logged

out of the simulation. This feature will come later in the development of the simulation.

Imports/Namespaces – InvestuServerProgram - Development 2

‘Imports’ here allows for types that are contained in a given namespace to be referenced directly. 3

namespaces are utilized in InvestuServerProgram:

• System.IO – This namespace handles the manipulation of files

• System.XML – Handles the manipulation and processing of XML data

• System.Data.OleDB – OLE DB stands for Object Linking and Embedding Database, which is an

API allowing the access of data from various sources, in this case Microsoft Access. Importing

this namespace allows us to easily manipulate a database using SQL.

Imports System.IO
Imports System.Xml
Imports System.Data.OleDb

INVESTU – J—H----- 105

Global Variables – InvestuServerProgram - Development 2

InvestuServerPorgram has 3 global variables in this development.

 Dim DBPath As String = "C:\Users\Joe\Documents\visual studio 2010\Investu
Writeup\Development 2\StockInfoDB.mdb"

Firstly, we the information for connecting to the database is defined. ‘DBPath’ here is simply the file

location of the database. In this case, the database is called ‘StockInfoDB.mdb’. ‘mdb’ stands for

Microsoft Access Database and is the standard file type when use Microsoft Access.

Public AccessDatabaseConnection As String = "Provider = Microsoft.Jet.OLEDB.4.0;Data
Source =" & DBPath

Secondly, we define ‘AccessDatabaseConnection’ which is contains the configuration for connecting to

the database. The syntax for this consists of ‘Provider=””Data Source=””’. ‘Provider’ in this case is

Microsoft.Jet.OLEDB.4.0 which is the standard format for the file type being used. ‘Data Source’ is simply

the file pathway of the database, which was defined in the previous line as ‘DBPath’. The concatenation of

these two strings results in a variable that can be called at any time to initiate a connection to the database.

Dim LoopCount As Integer = 0

‘LoopCount’ will be used to keep track of how many times the program has looped through a query, so that it is

easy to keep track of when to perform a reset. In this case, the program will have to reset once every stock

symbol has been queried. LoopCount has to be made a global variable because it will be used alongside a

timer. If it was declared inside the [timer.tick’ sub-routine, then it would be effectively redefined and lose its

value every tick. For this reason it is defined globally and simply referred back to in the timer.tick sub-routine.

Public Symbols As New List(Of String)

In this version of the program, the stock symbols for the companies in the FTSE 100 will be fetched from

a .CSV file, instead of being hard-coded directly into the program. To prepare for this, a list object is created,

that can have items appended to the end.

Public Class MainForm

 Dim DBPath As String = "C:\Users\Joe\Documents\visual studio 2010\Investu
Writeup\Development 2\StockInfoDB.mdb"
 Public AccessDatabaseConnection As String = "Provider =
Microsoft.Jet.OLEDB.4.0;Data Source =" & DBPath

 Dim LoopCount As Integer = 0
 Public Symbols As New List(Of String)

INVESTU – J—H----- 106

MainForm_Load – InvestuServerProgram - Development 2

When MainForm of InvestuServerProgram is loaded, some formatting occurs that visually displays the

current state of the program – which is in this case stopped, and the symbols list declared earlier is

populated with symbols. This is done by passing the file location of the .CSV file containing the symbols,

to the sub-routine ‘PopulateSymbolList’.

PopulateSymbolArray – InvestuServerProgram - Development 2

PopulateSymbolList is used to extract all of the symbols stored in StockSymbols.CSV, and use them to

populate a list.

Using SR As New StreamReader(FilePath)
 ...
End Using

StreamReader is a text reader in the System.IO namespace, which reads characters from a byte stream.

In this code, a ‘Using’ statement declares ‘SR’ as a StreamReader, and passes the value of FilePath to

the stream reader. By calling StreamReader here, a new instance is initialized, with the stream specified

as FilePath.

While Not SR.EndOfStream
 ...
End While

Public Sub PopulateSymbolList(ByVal FilePath As String)

 Dim CSVData() As String

 Using SR As New StreamReader(FilePath)
 While Not SR.EndOfStream
 CSVData = SR.ReadLine().Split(",")
 If String.IsNullOrEmpty(CSVData(0)) Then
 MsgBox("Error Null Value")
 Else
 Symbols.Add(CSVData(0).Trim)
 End If
 End While
 End Using

 End Sub

Private Sub MainForm_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

 RunningStoppedLabel.Text = "STOPPED"
 RunningStoppedLabel.ForeColor = Color.Red

 PopulateSymbolList("C:\Users\Joe\Documents\visual studio 2010\Investu
Writeup\Development 2\StockSymbols.csv")
 End Sub

INVESTU – J—H----- 107

‘EndOfStream’ is a built in property of StreamReader that gives a boolean value indicating whether or not

the current position in the stream is the end of the stream or not. This While loop will continue to loop

while EndOfStream is false.

CSVData = SR.ReadLine().Split(",")

Inside the While loop, a value is assigned to CSVData, a variable defined earlier in the sub-routine. The

value is equal to the value on the current line, split by a comma. Each value has been written to the .CSV

file seperated by a comma, and so this line of code splits these values up, and assigns the value of the

split symbol into CSVData.

If String.IsNullOrEmpty(CSVData(0)) Then
 MsgBox("Error Null Value")
Else
 Symbols.Add(CSVData.Trim)
End If

The next section of code is a conditional statement, which is used as a validation check to prevent erros

later in the code. The condition checks to see if the value of CSVData is null or empty. This could be

caused by incorrect values in the .CSV file, but they are avoided through this conditional. Assuming the

value of CSVData is not null or empty, the value is trimmed to remove any leading or trailing whitespace,

and then added to the Symbols list.

INVESTU – J—H----- 108

StartButton_Click – InvestuServerProgram - Development 2

This sub-routine starts the timer about which this program revolves. Each tick of the timer will cause new

information to be fetched from the internet and stored in the database. The visual display of the program

is updated so that the user can see that the programs current state is running.

Private Sub StartButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles StartButton.Click

 Timer1.Start()

 RunningStoppedLabel.Text = "RUNNING"
 RunningStoppedLabel.ForeColor = Color.Green

 End Sub

INVESTU – J—H----- 109

Timer1_Tick – InvestuServerProgram - Development 2

The tick of this timer is integeral to the operation of the server program. The basic premise is that for

every tick of the timer, the information for the symbol whos value is stored at the index value LoopCount

in SybolArray, will be fetched, and stored to the database. LoopCount is incremented, so that the next tick,

a new symbol is queried, and so on until all of the symbols have been queried, at which point the value of

LoopCount resets to 0, and the symbols are queried again from the beginning.

The timer interval is set to one second. One query per second is managable for the program, and will

mean that there is little threat of a stack overflow error occuring. If the value of the timer interval was any

lower than one second, there is a chance that before one query has finished, the next query would be

called, which would eventually lead to a stack overflow.

 Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Timer1.Tick

 If LoopCount > 99 Then
 LoopCount = 0
 RecentPricesBox.Clear()

 End If

 FetchLatestStockInfo()
 LoopCount += 1

 End Sub

INVESTU – J—H----- 110

FetchLatestStockInfo – InvestuServerProgram - Development 2

This sub-routine is called every time the timer ticks. It fetches the information relating to the stock

currently stored at the index value of LoopCount in the Symbols array.

Timer1.Interval = 1000

Initially, the interval of the timer is reset back to 1 second. This is important so that if the interval for any

reason changes, it is reset as quick as possible so that the interval between collecting data from each

symbol is consistent.

Dim StockPrice As Decimal
Dim StockChange As Decimal
StockPrice = GetStockPrice(Symbols(LoopCount))
StockChange= GetStockChange(Symbols(LoopCount))

Next, StockPrice and StockChange are declared and set to their current value, using the GetStockPrice

and GetStockChange functions. These functions both accept one argument, which in both cases is

‘Symbols(LoopCount). This means that the symbol whose information is retrieved is the symbol whos

index value in the Symbols list is ‘LoopCount’.

Sub FetchLatestStockInfo()

 Timer1.Interval = 1000
 Dim StockPrice As Decimal = GetStockPrice(Symbols(LoopCount))
 Dim StockChange As Decimal = GetStockChange(Symbols(LoopCount))

 If TimeOfDay.Hour > 8 And TimeOfDay.Hour < 16.5 Then
 Try

 UpdateDatabase(Symbols(LoopCount), StockPrice, StockChange)
 RecentPricesBox.Text += FormatString(LoopCount, Symbols(LoopCount),
StockPrice, StockChange)

 Catch errorVariable As Exception

 StoreCrashInfo(errorVariable.ToString(), DateTime.Now)
 If ShowErrorCheckBox.Checked = True Then
 Timer1.Stop()
 MsgBox(errorVariable.ToString())
 RunningStoppedLabel.Text = "STOPPED"
 End If
 End Try
 End If

 End Sub

INVESTU – J—H----- 111

If TimeOfDay.Hour > 8 And TimeOfDay.Hour < 16.5 Then
 ...
End If

This conditional uses TimeOfDay.Hour, a built in VB value, to check the time of day. If the time is after

8:00am and 16:30pm, then the code in the conditional will execute. If the current time is not within those

times, then the code will not execute. This check is here because these times are the FTSE100 trading

hours. Outside of these hours, the prices will never change as it is not possible to trade on any stock in

the FTSE100. By adding this conditional, we can avoid wasteful processing on the server and save

memory in the database by not adding redundant data.

Try
 ...

Catch ErrorVariable As Exception

 StoreCrashInfo(ErrorVariable.ToString(), DateTime.Now)
 If ShowErrorCheckBox.Checked = True Then
 Timer1.Stop()
 MsgBox(ErrorVariable.ToString())
 RunningStoppedLabel.Text = "STOPPED"
 End If
End Try

This Try-Catch is used to avoid errors that arise during the process of fetching and storing stock

information in the InvestuServerProgram.

Firstly, the program attempts to store the error information into the database, using a sub-routine called

StoreCrashInfo, which accepts two arguments; the error variable and the current time. This information is

useful for debugging purposes as this program will run for days and weeks without human interaction,

and so it can be difficult to know when or why the program crashed, if an error does occur. By storing the

error and time debugging is made easier.

Next, a conditional checks if a checkbox on the user interface is checked. If this checkbox is ticked, the

program will stop, because timer1.stop is called. Then, a message box will appear showing the error

variable, and the interface will be updated to show that program is in a stopped state. If the checkbox is

not ticked, then the error variable is stored into the database but none of the other code executes. It is

useful to have these two modes, having the program stop if an error occurs can be useful for debugging,

but would not be useful when the simulation is in use by users, as it would mean their simulations would

stop receiving data.

INVESTU – J—H----- 112

UpdateDatabase(Symbols(LoopCount), StockPrice, StockChange)
RecentPricesBox.Text += FormatString(LoopCount, Symbols(LoopCount), StockPrice,
StockChange)

Inside the Try-Catch are two calls to sub-routines. The first of these calls is a call to UpdateDatabase.

UpdateDatabase accepts 3 arguments; A symbol, about which information is to be stored, a price value,

and a change value. This then adds the relevant information to the database.

The next call is to a sub-routine called FormatString, which simply takes information and formats it. This

newly formatted string is added to a text box which works as a visual display for the user to see how the

server program is operating.

FormatString – InvestuServerProgram - Development 2

FormatString simply takes the values passed and spaces them equally, to create a clear visual display for

the user. The function takes and integer and two strings, and then formats them in such a way that the

start of each piece of information.

Function FormatString(ByVal A As Integer, B As String, C As String, D As String)
 Dim FormattedString As String

 B = B & Space(10 - B.Length)
 C = C & Space(10 - C.Length)
 D = D & Space(10 - D.Length)

 FormattedString = A & Space(5) & B & C & D & vbCrLf
 Return FormattedString
 End Function

INVESTU – J—H----- 113

UpdateDatabase – InvestuServerProgram - Development 2

UpdateDatabase takes three arguments and uses them to create a new entry into the database.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection

If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()
 ...
ConnectionDb.Close()

This code declares as variable, connectionDB, as a new connection the database. ‘OleDbConnection’ is a
type built into the OleDb namespace that was imported earlier. It takes one value, which is the connection
string. This was defined earlier in the code. Once this connection is created, its default state is closed.
Therefore, the next line of code checks the state, and if it is found to be closed, the connection is opened,
meaning the database is now accessible to edit. The final line of code makes sure that the connection is
closed after the database has been editted. This is important, as trying to access the database multiple
times without closing connections first can result in concurrency issues and crashes.

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

Once a connection has been established, a new command can be created. This is done via the
‘ConnectionDb.CreateCommand’ command. Once the command is created, it needs text that will be
executed. This is done via ‘cmd.CommandText =’. In this case, data is being written to the database, and
so an insert command is used.

 cmd.CommandText = "INSERT INTO tblStockPriceHistory (StockSymbol, StockPrice,
FetchDate) VALUES ('" & StockSymbol & "','" & StockPrice & "','" & Date.Now & "')"
 cmd.ExecuteNonQuery()

The sytax of an ‘Insert’ command is as follows;
INSERT INTO tableName (columnName) VALUES (value)

Sub UpdateDatabase(ByVal StockSymbol As String, ByVal StockPrice As Decimal, ByVal
StockChange As Decimal)

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

 cmd.CommandText = "INSERT INTO tblStockPriceHistory (StockSymbol, StockPrice,
FetchTime, FetchDate) VALUES ('" & StockSymbol & "','" & StockPrice & "','" &
TimeOfDay & "','" & Date.Now & "')"
 cmd.ExecuteNonQuery()

 ConnectionDb.Close()

 End Sub

INVESTU – J—H----- 114

Therefore in this statment, we are inserting into the table ‘tblStockPriceHistory’, specifically the three
columns StockSymbol, StockPrice and FetchTime. The value inserted are StockSymbol, StockPrice and
the current date.

SplitStockInfo – InvestuServerProgram - Development 2

The code here is taken from Testing 2 in Development 2 on page 96.

Function SplitStockInfo(ByVal StringToSplit As String, ByVal DetailsToExtract As
String)

 Dim ExtractedDetails As String = ""

 Dim ArrayList() As String = StringToSplit.Split(":")
 Dim SubArrayList() As String = ArrayList(1).Split(",")
 Dim SubArrayList1() As String = ArrayList(2).Split(",")

 Select Case DetailsToExtract

 Case "Name"
 ExtractedDetails = Trim(SubArrayList(0))

 Case "Price"
 ExtractedDetails = Trim(SubArrayList1(0))
 If ExtractedDetails = "#N/A" Then
 ExtractedDetails = "0"
 End If

 Case "Change"
 ExtractedDetails = Trim(ArrayList(3))
 If ExtractedDetails = "#N/A" Then
 ExtractedDetails = "0"
 End If

 End Select
 Return ExtractedDetails
 End Function

INVESTU – J—H----- 115

GetStockChange – MainForm - InvestuServerProgram - Development 2

‘GetStockChange’ is a function that has a single parameter – ‘StockSymbol’, which the function uses to

retrieve the ‘Change’ value for the relevant stock. This is done via querying the Google Sheets sheet with

the symbol link appended to the end, and then splitting the resulting string for the ‘Change’ value.

 This process of retrieving stock information from the internet using XML is detailed between pages 27

and 31.

The origin of this sub-routine including a detailed code explaination can be found in Development 1 on

page 64.

 Function GetStockChange(ByVal StockSymbol As String)

 Dim StockChange As Decimal
 Try

 Dim document As XmlDocument
 Dim nodelist As XmlNodeList
 Dim node As XmlNode

 document = New XmlDocument()

document.Load("https://spreadsheets.google.com/feeds/list/0AhySzEddwIC1dEtpWF9hQUhCWUR
ZNEViUmpUeVgwdGc/1/public/basic?sq=symbol=" & StockSymbol)
 nodelist = document.GetElementsByTagName("entry")

 For Each node In nodelist
 StockChange = SplitStockInfo(node.ChildNodes.Item(4).InnerText,
"Change")
 Next
 Catch errorVariable As Exception
 Timer1.Stop()
 End Try
 Return StockChange
 End Function

INVESTU – J—H----- 116

GetStockName – MainForm - InvestuServerProgram - Development 2

‘GetStockName’ is a function that has a single parameter – ‘StockSymbol’, which the function uses to

retrieve the ‘Change’ value for the relevant stock. This is done via querying the Google Sheets sheet with

the symbol link appended to the end, and then splitting the resulting string for the ‘Change’ value.

 This process of retrieving stock information from the internet using XML is detailed between pages 27

and 31.

The origin of this sub-routine including a detailed code explaination can be found in Development 1 on

page 64.

Function GetStockName(ByVal StockSymbol As String)

 Dim StockName As String = "Error"
 Try

 Dim document As XmlDocument
 Dim nodelist As XmlNodeList
 Dim node As XmlNode

 document = New XmlDocument()

document.Load("https://spreadsheets.google.com/feeds/list/0AhySzEddwIC1dEtpWF9hQUhCWUR
ZNEViUmpUeVgwdGc/1/public/basic?sq=symbol=" & StockSymbol)
 nodelist = document.GetElementsByTagName("entry")

 For Each node In nodelist
 StockName = SplitStockInfo(node.ChildNodes.Item(4).InnerText, "Name")

 Next
 Catch errorVariable As Exception
 Timer1.Stop
 End Try
 Return StockName
 End Function

INVESTU – J—H----- 117

GetStockPrice – MainForm - InvestuServerProgram - Development 2

‘GetStockPrice’ is a function that has a single parameter – ‘StockSymbol’, which the function uses to

retrieve the ‘Change’ value for the relevant stock. This is done via querying the Google Sheets sheet with

the symbol link appended to the end, and then splitting the resulting string for the ‘Change’ value.

 This process of retrieving stock information from the internet using XML is detailed between pages 27

and 31.

The origin of this sub-routine including a detailed code explaination can be found in Development 1 on

page 64.

Function GetStockPrice(ByVal StockSymbol As String)

 Dim StockPrice As Decimal
 Try
 Dim document As XmlDocument
 Dim nodelist As XmlNodeList
 Dim node As XmlNode
 document = New XmlDocument()

document.Load("https://spreadsheets.google.com/feeds/list/0AhySzEddwIC1dEtpWF9hQUhCWUR
ZNEViUmpUeVgwdGc/1/public/basic?sq=symbol=" & StockSymbol)
 nodelist = document.GetElementsByTagName("entry")

 For Each node In nodelist
 StockPrice = SplitStockInfo(node.ChildNodes.Item(4).InnerText,
"Price")
 Next
 Catch errorVariable As Exception
 Timer1.Stop()

 End Try
 Return StockPrice

 End Function

INVESTU – J—H----- 118

StoreCrashInfo – MainForm - InvestuServerProgram - Development 2

Store crash info is a sub-routine used to store in the information relating to crashes in

‘InvestuServerProgram’. This sub-routine will be useful for debugging purposes, as the resulting database

entries can be looked at for information relating to crashes, which can then help to fix bugs.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

The sub-routine begins by connecting to the database. A new command is created via the

‘CreateCommand’ method.

cmd.CommandText = "INSERT INTO TblCrash (CrashMsg, CrashTime) VALUES ('" & CrashMsg &
"','" & CrashTime & "')"

The command text is an Insert command, that inserts two values into the table ‘tblCrash’. These values

are the exeception that was thrown, or ‘CrashMsg’, and the current time, or ‘CrashTime’.

cmd.ExecuteNonQuery()
ConnectionDb.Close()

The command is executed and the connection to the database is closed.

Sub StoreCrashInfo(ByVal CrashMsg, ByVal CrashTime)

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

 cmd.CommandText = "INSERT INTO TblCrash (CrashMsg, CrashTime) VALUES ('" &
CrashMsg & "','" & CrashTime & "')"

 cmd.ExecuteNonQuery()
 ConnectionDb.Close()
 End Sub

End Class

INVESTU – J—H----- 119

Investu Simulation – Development 2

This development of the simulation will include the ability for users to log into their personal and team

accounts. This means that Development 2 requires a form that allows users to create an account, and a

form that allows users to login to their account. These will be call SignUpForm and LoginForm

respectively.

This development of the simulation will also incorporate the team system which works as follows:

Teams can be created; which users can join. When a user is part of a team, they will have the choice

upon logging in, to either load into the team account – an account accessible by themselves and the other

3 members of their team, or to load into their personal account. This choice will be determined by a

checkbox in LoginForm. When a user logs into a team account, their progress will be saved to that

account rather than their personal account.

INVESTU – J—H----- 120

Database 2 – Investu – Development 2

With the addition of SignUpForm and LoginForm, comes the need for additional tables in the database.

The additional tables are as follows:

• tblUserInfo – A table for storing the data relating to individual users in the simulation. Every new

user has their own entry in the table, with data such as name, password and balanced stored.

• tblTeams – A table for storing the data relating to the teams in the simulation.

• tblTeamUsers – A link table for linking users to teams and vice versa. This tracks which users are

members of each team.

• tblOpenPositions – Used for storing the currently open positions that users have. The position

has an attribute that states the accountID that executed the trade, which will allow the simulation

to load open positions that were made in the past.

INVESTU – J—H----- 121

SignUpForm – Investu - Development 2

SignUpForm untilises the database to create new accounts, that will then be accessible later on. These

accounts will allow users to save their information such as balance and portfolios, meaning they can keep

their progress even after logging out of the simulation. This will help to improve the user experience of the

simulation, and the effectiveness of the program in reaching its desired goal.

Global Variables – SignUpForm – Investu Development 2

In this form, the is only one global variable – the database connection string. The value of this string is

fetched from MainForm. If the location of the database changes, then by fetching the connection string

from MainForm, it means that only the string in MainForm needs to be changed.

SignUpButton_Click – SignUpForm - Investu Development 2

This sub-routine occurs when the user clicks the ‘Sign Up’ button. The user interface will have a series of

input boxes, followed by a ‘Sign Up’ button. Upon clicking this button, this code is executed.

If ProceedToSignUp() Then

End If

First, the conditional calls the function ‘ProceedToSignUp’ to check that the user credentials entered are

valid. This validation check is made to ensure that a user does not try to create an account that already

exists.

Once the condition of the conditional has been met, the sub-routine ‘CreateNewAccount’ is called. This is

the sub-routine that is responsible for inputting the users new account information into the database.

Public Class SignUpForm

 Dim AccessDatabaseConnection As String = MainForm.AccessDatabaseConnection

 Private Sub SignUpButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CreateAccountButton.Click

 If ProceedToSignUp() Then
 CreateNewAccount(UsernameBox.Text, PasswordBox.Text, EmailBox.Text)

 LoginForm.UsernameTextBox.Text = UsernameBox.Text
 LoginForm.PasswordTextBox.Text = PasswordBox.Text

 MsgBox("Your account has been created! Click login to proceed.")

 Me.Close()
 End If

 End Sub

INVESTU – J—H----- 122

CreateNewAccount(UsernameBox.Text, PasswordBox.Text, EmailBox.Text)

LoginForm.UsernameTextBox.Text = UsernameBox.Text
LoginForm.PasswordTextBox.Text = PasswordBox.Text

MsgBox("Your account has been created! Click login to proceed.")

Me.Close()

The following 2 lines of code affect LoginForm. They change the values of the username and password

boxes to contain the information of the account just created. This is a quality-of-life addition to the code

that simply makes the sign-up and login experience easier for the user. A message box appears that

informs the user that they have successfully created an account, and then the form is closed, displaying

the LoginForm behind.

INVESTU – J—H----- 123

ProceedToSignUp – SignUpForm - Investu Development 2

The purpose of this function is to validate the inputs of the user. The function consists of three nested

conditionals, each one checking if one aspect of the user information is valid; username, password and

email. The reason there are three conditional instead of one with the conditions joined together by ‘And’,

is to make it easy to differentiate between errors, so that the user can be advised which section of their

sign up process did not pass validation.

 Function ProceedToSignUp()

 If ValidatePassword(PasswordBox.Text) Then
 If ValidUsername(UsernameBox.Text) Then
 If ValidEmail(EmailBox.Text) Then
 Return True
 Else
 MsgBox("The email you have entered is invalid")
 End If
 Else
 MsgBox("The username you have entered is already taken.")
 End If
 Else
 MsgBox("Invalid Password - Passwords must have at least 1 upper case
character, 1 number and 8 total characters.")
 End If

 Return False
 End Function

 End Sub

INVESTU – J—H----- 124

ValidUsername – SignUpForm - Investu Development 2

If UsernameBox.Text = "" Or PasswordBox.Text = "" Then
 ErrorMsg = "The Username and Password are required fields."
 Return False
Else

The first validation check inside CheckUsername checks that neither the Username box or Password box

are empty.

Function ValidUsername(ByVal NewUsername As String)

 If UsernameBox.Text = "" Or PasswordBox.Text = "" Then
 ErrorMsg = "The Username and Password are required fields."
 Return False
 Else

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand
 Dim SQLReply As OleDbDataReader

 cmd = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT Username FROM tblUserInfo"
 SQLReply = cmd.ExecuteReader

 For Each Record In SQLReply

 If Record.item("Username") = NewUsername Then
 Return False
 End If
 Next

 ConnectionDb.Close()

 End If
 Return True
 End Function

 End Sub

INVESTU – J—H----- 125

Then, a select query is set up. This constitutes first connecting to the database, and then creating a new

command in SQL, which is this case is:

SELECT Username FROM tblUserInfo

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand
 Dim SQLReply As OleDbDataReader

 cmd = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT Username FROM tblUserInfo"
 SQLReply = cmd.ExecuteReader

This SQL command will select every username from the table ‘tblUserInfo’. Now that all of the usernames

have been fetched, a linear search can be carried out in order to find whether or not the username

already exists.

For Each Record In SQLReply
 If Record.item("Username") = NewUsername Then
 Return False
 End If
Next
ConnectionDb.Close()

This For-loop takes every username returned from the database after the query, and compares it to

‘NewUserName’, a value passed to the function, that contains the username the user is trying to sign up

with. If a successful comparison between a fetched username and the new username is made, then false

is returned. The connection to the database is then closed.

After this check, if the function has still not exited by returning false, it means the value of NewUsername

is valid and the function returns true.

INVESTU – J—H----- 126

ValidatePassword - SignUpForm – Investu Development 2

Function ValidatePassword(ByVal Password As String, Optional ByVal MinLength As Integer =
8, Optional ByVal NumUpper As Integer = 1, Optional ByVal NumLower As Integer = 1,
Optional ByVal NumNumbers As Integer = 1, Optional ByVal NumSpecial As Integer = 0) As
Boolean

This function has 6 parameters that allow for the customization of the requirements of the users password.

The parameters are Password, which contains the users chosen password; MinLength, which determines

how long the chosen password must be; NumUpper, which determines the number of upper case letters

that the password must have; NumLower which determines the number of lower case letters that the

password must have, NumNumbers which determines the number of numbers that the password must

have and NumSpecial which determines the number of special characters that the password must have.

Firstly, these values are declared. They corrospond to the parameters of the function. These values are

declared as RegularExpressions. RegularExpressions are a way of defining the syntax of strings. At the

end of the declaration, in the brackets, the syntax of the string is written. Each section defines certain

values, for example [a-z] means all values between a-z, and [^a-zA-Z0-9] means ‘all values not

included in the sets ‘a-z, A-Z, 0-9’; therefore this defines the syntax for special characters, which do not fit

into those categories.

Dim UpperCase As New System.Text.RegularExpressions.Regex("\p{Lu}")
Dim LowerCase As New System.Text.RegularExpressions.Regex("[a-z]")
Dim Numbers As New System.Text.RegularExpressions.Regex("[0-9]")
Dim Specials As New System.Text.RegularExpressions.Regex("[^a-zA-Z0-9]")

Function ValidatePassword(ByVal Password As String, Optional ByVal MinLength As
Integer = 8, Optional ByVal NumUpper As Integer = 1, Optional ByVal NumLower As
Integer = 1, Optional ByVal NumNumbers As Integer = 1, Optional ByVal NumSpecial As
Integer = 0) As Boolean

 Dim UpperCase As New System.Text.RegularExpressions.Regex("\p{Lu}")
 Dim LowerCase As New System.Text.RegularExpressions.Regex("[a-z]")
 Dim Numbers As New System.Text.RegularExpressions.Regex("[0-9]")

 Dim Specials As New System.Text.RegularExpressions.Regex("[^a-zA-Z0-9]")

 If Len(Password) < MinLength Then Return False

 If UpperCase.Matches(Password).Count < NumUpper Then Return False
 If LowerCase.Matches(Password).Count < NumLower Then Return False
 If Numbers.Matches(Password).Count < NumNumbers Then Return False
 If Specials.Matches(Password).Count < NumSpecial Then Return Fals

 Return True
End Function

INVESTU – J—H----- 127

 CreateNewAccount – SignUpForm – Investu Development 2

CreatenewAccount is responsible for inserting the new, validated account information into the database. It

does this through an ‘INSERT’ SQL command, into which the values of the relevant attributes are

inserted.

cmd.CommandText = "INSERT INTO tblUserInfo (Username, Balance, Passwrd) VALUES ('" &
Username & "','" & Balance & "','" & Password & "')"

This is the SQL command. It is a basic Insert command that takes 3 values, corrosponding to the 3

values passed as arguments to the sub-routine when it is called.

Sub CreateNewAccount(ByVal Username As String, ByVal Password As String, ByVal Email
As String)

 Dim Balance As Integer = 10000000

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand
 cmd = ConnectionDb.CreateCommand

 cmd.CommandText = "INSERT INTO tblUserInfo (Username, Balance, Passwrd) VALUES
('" & Username & "','" & Balance & "','" & Password & "')"

 cmd.ExecuteNonQuery()

 ConnectionDb.Close()

 End Sub

INVESTU – J—H----- 128

LoginForm – Investu - Development 2

Global Variables - LoginForm – Investu Development 2

Similarly to SignUpForm, login form has a global variable called ‘AccessDatabaseConnection’. This is

global for the same reasons as discussed in SignUpForm – Version 1.

The 5 following variables are all attributes of the account information. These values will all need to be

accessible to MainForm when it loads, and so they are defined globally here, using ‘Public’ so that they

can be accesed when needed.

Public Class LoginForm

 Dim AccessDatabaseConnection As String = MainForm.AccessDatabaseConnection

 Public AccountID As Integer
 Public Admin As Boolean
 Public TeamName As String
 Public TeamMode As Boolean = False
 Public Username As String

INVESTU – J—H----- 129

Login_Click - LoginForm – Investu Development 2

Login_Click is a sub-routine that has the handle ‘Login.click’ which means it will be called when the ‘Login’

button is clicked. This is the button the user will press when they have entered all of their login credentials.

If ValidUserLogin(Username, PasswordTextBox.Text) Then
 ...
Else
 MsgBox("Invalid Username or Password.")
End If

The sub-routine is based off of a series of nested conditionals that work to validate the users login

credentials and work out which aspects of the simulation to load.

The first conditional calls the function ‘ValidUserLogin’, and passes two arguments; the users username

and pasword.

LoadUserInfo(AccountID)
If Admin = True Then

AdminView.Show()
Me.Close()

Else
If TeamModeCheckBox.Checked Then

 If TeamName = "" Then
MsgBox("You don't have a team!")

Else
TeamMode = True

End If
End If

MainForm.Show()
Me.Close()

Private Sub Login_Click(sender As System.Object, e As System.EventArgs) Handles
Login.Click
 Username = UsernameTextBox.Text
 If ValidUserLogin(Username, PasswordTextBox.Text) Then
 LoadUserInfo(AccountID)

 If Admin = True Then
 AdminView.Show()
 Me.Close()
 Else
 If TeamModeCheckBox.Checked Then
 If TeamName = "" Then
 MsgBox("You don't have a team!”)
 Else
 TeamMode = True
 End If
 End If
 MainForm.Show()
 Me.Close()
 End If
 Else
 MsgBox("Invalid Username or Password.")
 End If
 End Sub

INVESTU – J—H----- 130

If the value of ‘ValidUserLogin’ returns as true, the above code runs. Firstly, the information of the user is

loaded through the sub-routine ‘LoadUserInfo’. This takes an argument that contains the user ID of the

account being logged into. The ID of the account is stored in a global variable called AccountID, which is

given a value inside the function ‘ValidUserLogin’, after a username and password match is confirmed.

Next, the admin status of the user is checked. This is an attribute of the account that is stored as a

boolean value in the database, and determines whether or not the account has admin priveleges. If the

value is true, then a seperate form is loaded, called ‘AdminView’. This will be developed later, as it is not

the main focus of Development 2.

If the ‘Admin’ attribute of the account has a value of false, then a different conditional runs. This

conditional checks whether or not the user has decided to log into their team account, or their personal

account. When the user information is loaded, their team name is loaded. This value goes into the

variable TeamName. If ‘TeamName’ is empty, then it means that the user does not belong to a team. The

user would then be loaded into their personal account. Else, the value of ‘TeamMode’ is set to true, and

the MainForm is loaded.

ValidUserLogin - LoginForm – Investu Development 2

‘ValidUserLogin’ is a function that has two parameters; usrename and password. It uses these to validate

the account credentials input by the user. It does this through a Select SQL command.

SELECT AccountID FROM tblUserInfo WHERE Username='" & Username & "' AND Passwrd='" &

Password & "'"

The item selected is the account ID. This will be useful later in the program, as it is the primary key used

for identifying the users account. The account ID will be only be selected from the rows where the

‘username’ column is the value of the username input by the user, and the ‘passwrd’ column is the same

as the password input by the user, in the login phase. If these two values match, the account ID is fetched,

and the function returns true.

Function ValidUserLogin(ByVal Username As String, ByVal Password As String)

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()
 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT AccountID FROM tblUserInfo WHERE Username='" &
Username & "' AND Passwrd='" & Password & "'"

 Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

 For Each Record In SQLReply
 AccountID = Record.item("AccountID")
 Return True
 Next
 ConnectionDb.Close()
 Return False

 End Function

INVESTU – J—H----- 131

There could be concern that if there were two entities in the database with the same username and

password, then two account ID’s would be fetched. However, thanks to the validation checks done during

the sign-up phase, it is not possible to create two accounts with the same username.

LoadUserInfo - LoginForm – Investu Development 2

This sub-routine uses SQL commands, as previously discussed, to load the information of the user. The

sub-routine takes only one argument, which is the account ID of the account about which information is

being retrieved.

The syntax for this section of code is the same as previous Select commands discussed earlier.

Sub LoadUserInfo(ByVal AccountID As Integer)

 Dim UserValid As Boolean = False
 TeamName = ""

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()
 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT tblTeams.TeamName FROM tblTeams, tblTeamUsers,
tblUserInfo WHERE tblTeams.TeamID = tblTeamUsers.TeamID AND tblTeamUsers.AccountID =
tblUserInfo.AccountID AND tblUserInfo.AccountID=" & AccountID & ""

 Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

 For Each Record In SQLReply
 TeamName = Record.item("TeamName")
 Next
 SQLReply.Close()

 cmd.CommandText = "SELECT Admin FROM tblUserInfo WHERE AccountID=" & AccountID
& ""

 Dim SQLReply1 As OleDbDataReader = cmd.ExecuteReader

 For Each Record In SQLReply1
 Admin = Record.item("Admin")
 Next
 ConnectionDb.Close()
 End Sub

INVESTU – J—H----- 132

MainForm – Investu - Development 2

The second development of MainForm will allow the simulation to fulfil the specific objectives for

Development 2 set out in the beginning of the section. This includes integrating the account system,

which has been started by the creating of ‘LoginForm’ and ‘SignupForm’ earlier, and adding team

capabilities, as well as connecting the database to allow for saved progress.

Imports/Namespaces– MainForm – Investu Development 2

The imports of this version of simulation have already been discussed in the Version 1; They include

System.IO for reading text files, system.XML for reading XML data,

System.Windows.Forms.DataVisualization.Charting for graphing stock market data, and

System.Data.OleDb for accessing the database using SQL.

Global Variables – MainForm – Investu Development 2

Inside the header of version 2 of MainForm, some changes have been made in comparison to version 1.

The variables ‘Balance’, ‘StockInfo’, ‘TimerInterval’ have all been removed, and are now integrated into

the code locally in their respective sub-routines.

The list ‘Symbols’ has been updated from a static array to a list structure. This works exactly the same

way as described in InvestuServerProgram, in which the symbols for the FTSE100 stocks are read from

a .CSV file.

Public AccountID As Integer
Public TeamMode As Boolean
Public TeamName As String
Public Balance As Decimal

Imports System.IO
Imports System.Xml
Imports System.Windows.Forms.DataVisualization.Charting
Imports System.Data.OleDb

Public Class MainForm

 Public AccessDatabaseConnection As String = "Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=; Data Source=C:\Users\Joe\Documents\visual studio 2010\Investu
Writeup\Development 2\StockInfoDB.mdb"

 Public OpenPositions As New List(Of StockAttributes)
 Public Symbols As New List(Of String)

 Dim Series1 As New Series
 Dim LastValue As Decimal

 Public AccountID As Integer
 Public TeamMode As Boolean
 Public TeamName As String
 Public Balance As Decimal

 Public ErrorMsg As String

INVESTU – J—H----- 133

These variables are used for holding and passing account information. The value of these variables is

passed from LoginForm and so for now it is easier to declare them globally. In the next development, this

could change to remove the need of global variables.

Public ErrorMsg As String

‘ErrorMsg’ is a variable, to which errors will be passed when they arise, and then the value of ‘ErrorMsg’

will be output at a set point, instead of having message boxes throughout the code. This allows for a more

stream lined error checking process, as all of the error messages are contained within a single variable.

INVESTU – J—H----- 134

MainForm_Load – MainForm – Investu Development 2

This sub-routine is run on loading of MainForm, which occurs after a successful login attempt by the user.

 AccountID = LoginForm.AccountID
 TeamMode = LoginForm.TeamMode

Two of the global variables declared earlier are given values. These values are taken from LoginForm.

If TeamMode = True Then
 TeamName = LoginForm.TeamName
 LoginLabel.Text = "Welcome, " & LoginForm.Username & ". (" & TeamName & ")"
ElseIf TeamMode = False Then
 TeamName = "0"
 LoginLabel.Text = "Welcome, " & LoginForm.Username & ""
End If

If the newly defined value of ‘TeamMode’ is true, then the value of ‘TeamName’ is retrieved, and a label is

updated in order to tell the user they are in team mode, by appending their team name inside brackets.

If the value of ‘TeamMode’ is false, then the user is signed into their personal accounts. ‘TeamName’ is

set to “0” and the value of the label is simply set to their username, without a team name.

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

 AccountID = LoginForm.AccountID
 TeamMode = LoginForm.TeamMode

 If TeamMode = True Then
 TeamName = LoginForm.TeamName
 LoginLabel.Text = "Welcome, " & LoginForm.Username & ". (" & TeamName & ")"
 ElseIf TeamMode = False Then
 TeamName = "0"
 LoginLabel.Text = "Welcome, " & LoginForm.Username & ""
 End If

 Balance = Math.Round(FetchBalance(), 2)
 BalanceBox.Text = "£" & Math.Round((Balance / 100), 2)

 FetchOpenPositions()

 CreateChart()
 GraphSettings()

 GraphScaleComboBox.SelectedItem = "2"

 PopulateSymbolArray("C:\Users\Joe\Documents\visual studio 2010\Investu
Writeup\Development 2\StockSymbols.csv")
 For L = 0 To Symbols.Count - 1
 SelectStockComboBox.Items.Add(Symbols(L))
 Next
 End Sub

INVESTU – J—H----- 135

PopulateSymbolArray– MainForm – Investu Development 2

This sub-routine is used to populate the ‘Symbols’ list. This is the same code as used in

‘InvestuServerProgram’ on page 106

Public Sub PopulateSymbolArray(ByVal FilePath As String)

 Dim CSVData() As String

 Using SR As New StreamReader(FilePath)

 While Not SR.EndOfStream
 CSVData = SR.ReadLine().Split(",")
 If String.IsNullOrEmpty(CSVData(0)) Then
 MsgBox("Error loading FTSE 100")
 Else
 Symbols.Add(CSVData(0).Trim)
 End If

 End While
 End Using

 End Sub

 Public ErrorMsg As String

INVESTU – J—H----- 136

Timer1_Tick – MainForm – Investu Development 2

Timer1_Tick has been changed since development 1. In this development, the timer has a different

interval – 60000 milliseconds as opposed to 5000 in the earlier version. This is because the way in which

data is plotted to the graph has been changed to work with the new InvestuServerProgram. The data for

the graphs is now retrieved from the data base, instead of directly through the simulation itself, with the

data of course being supplied through the server program. The server program works by retrieving the

stock information of a new stock every second for one hundred seconds, and then once the last of the

100 symbols is reached, the process repeats, and the first symbol is queried. This effectively means that

each stock only receives new data every 100 seconds. Therefore, when the user is looking at a graph,

there is no reason to update it every 5 seconds, as it will only show a change every 20 updates, which is

a waste of processing power.

The logic behind retrieving data from the database instead of through the simulation itself, is that the

database can store hundreds of thousands of data points, whereas the program can only plot data points

that it has collected during its runtime.

Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Timer1.Tick

 Dim StockInfoString

 Try
 Timer1.Interval = 60000
 StockInfoString = FetchStockDetailsString(SelectStockComboBox.SelectedItem)
 NameBox.Text = SplitStockInfo(StockInfoString, "Name")
 PriceBox.Text = SplitStockInfo(StockInfoString, "Price")
 ChangeBox.Text = SplitStockInfo(StockInfoString, "Change")

 Series1.Points.Clear()
 Plot24hrData()
 UpdatePortfolio()
 GraphSettings()

 VolatilityBox.Text = CalculateVolatility(PriceBox.Text, ChangeBox.Text) &
"%"
 Catch ex As Exception
 MsgBox(ex.ToString())
 End Try
 End Sub

 Public ErrorMsg As String

INVESTU – J—H----- 137

CalculateVolatility – MainForm – Investu Development 2

Another feature provided to the user is the volatility of a stock. This is a feature outlined in the features list,

derived from the interaction with the client and user. To show the volatility of a stock, all that needs to be

done is to work out out the change in a stock as a percentage of its current price. For example, if a share

of a company starts the trading day at 100 pence, and then changes to 101, then the intra-day change is

1, which is 1% of the current price, meaning it has a 1% volatility for the day so far.

This is done by passing ‘Price’ and ‘Change’ to the function as decimals, and then validating that both the

values are greater than 0. Then, the value of ‘Volatility’ is worked out as a percentage using a simple

calculation. This value is rounded and returned.

FetchBalance – MainForm – Version 2

FetchBalance is a function that fetches the balance of the user or the team that is logged into the account. To
do this, a simple SQL statement is used, using the standard database connection code as described earlier.

If TeamMode = True Then

Function CalculateVolatility(ByVal Price As Decimal, ByVal Change As Decimal)

 Dim Volatility As Decimal
 Price = Math.Abs(Price)
 Change = Math.Abs(Change)

 If Price <> 0 And Change <> 0 Then
 Volatility = (Change / Price) * 100
 Volatility = Math.Round(Volatility, 2)
 Else
 Volatility = 0
 End If

 Return Volatility
 End Function

Function FetchBalance()

 Dim CommandString As String

 If TeamMode = True Then
 CommandString = "SELECT Balance FROM tblTeams WHERE TeamName='" & TeamName
& "'"
 Else
 CommandString = "SELECT Balance FROM tblUserInfo WHERE AccountID=" &
AccountID & ""
 End If

 Using Connection As New OleDbConnection(AccessDatabaseConnection)

 Dim Command As New OleDbCommand(CommandString, Connection)
 Connection.Open()
 Dim reader As OleDbDataReader = Command.ExecuteReader()

 While reader.Read()
 Balance = reader(0)
 End While

 reader.Close()
 End Using

 Return Balance
 End Function

INVESTU – J—H----- 138

 CommandString = "SELECT Balance FROM tblTeams WHERE TeamName='" & TeamName &
"'"
 Else
 CommandString = "SELECT Balance FROM tblUserInfo WHERE AccountID=" &
AccountID & ""
 End If

Now that the team system has been integrated, it is no longer possible to simply retrieve information using an
account ID. Instead, the users team mode has to be checked. If it is found to be true, then the balance value is
fetched from ‘tblTeams’, whereas if it is false, the value for the balance is fetched from the tblUserInfo table.

FetchOpenPositions – MainForm – Investu Development 2

FetchOpenPositions is the sub-routine that allows the user to keep their trading progress. The sub-routine
fetches all of the open positions that the user has. This will occur on logging into the simulation.
Combined with the ability to save and fetch the users balance, the user will now be able to maintain
progress after logging out of their team or personal account.

 If TeamMode = True Then
 cmd.CommandText = "SELECT * FROM tblOpenPositions WHERE
tblOpenPositions.TeamName='" & TeamName & "'"
 Else
 cmd.CommandText = "SELECT * FROM tblOpenPositions WHERE AccountID='" &
AccountID & "' AND TeamName='0'"

 End If

The sub-routine begins with the standard connection to database code, which is followed by a conditional.
Within the conditional, the value of the command text, or SQL statement, is set. The value of the

Sub FetchOpenPositions()

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

 If TeamMode = True Then
 cmd.CommandText = "SELECT * FROM tblOpenPositions WHERE
tblOpenPositions.TeamName='" & TeamName & "'"
 Else
 cmd.CommandText = "SELECT * FROM tblOpenPositions WHERE AccountID='" &
AccountID & "' AND TeamName='0'"

 End If

 Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

 For Each Record In SQLReply
 OpenPositions.Add(New StockAttributes With {.StockSymbol =
Record.item("StockSymbol"), .StockValue = Record.item("BuyPrice"), .StockQuantity =
Record.item("StockQuantity"), .OpenPositionID =
Record.item("OpenPositionID"), .StockName = Record.item("StockName"), .BuyDate =
Record.item("TradeDate")})
 UpdatePortfolio()

INVESTU – J—H----- 139

command text again is dependent on the value of the boolean ‘TeamMode’. If the value is true, then the
following command text is set;

SELECT * FROM tblOpenPositions WHERE tblOpenPositions.TeamName='" & TeamName & "'

Which simply selects all information from the table ‘tblOpenPositions’ where the value of ‘TeamName’ is the
value stored in the variable ‘TeamName’ within the program.

SELECT * FROM tblOpenPositions WHERE AccountID='" & AccountID & "' AND TeamName='0'

If the value of ‘TeamMode’ is false, then the users personal trades are fetched. To find these, two values
are checked; AccountID and TeamName. First, the value of the column ‘AccountID’ is compared with the
account ID within the simulation. However, another check needs to be made, as if only this check was
used, it would return trades made by the user not only on their personal account, but also on the team
account. Therefore we must make sure the trades that are fetched were not done on a team account. To
do this, the value of the ‘TeamName’ column is checked. When a user logs into a personal account, the
value of ‘TeamName’ is set to ‘0’. This is an arbitrary value that simply denotes that the user is not in a
team. When the user makes executes a trade, this value will go into the ‘TeamName’ column in open
trades, to show that the trade was not made on a team account, but a personal account. Therefore by
also checking that ‘TeamName’ is ‘0’, it can be made certain that all of the trades fetches are those made
on the users personal account.

 Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

 For Each Record In SQLReply
 OpenPositions.Add(New StockAttributes With {.StockSymbol =
Record.item("StockSymbol"), .StockValue = Record.item("BuyPrice"), .StockQuantity =
Record.item("StockQuantity"), .OpenPositionID = Record.item("OpenPositionID"), .StockName
= Record.item("StockName"), .BuyDate = Record.item("TradeDate")})
 UpdatePortfolio()

Once the command text is set, it is executed. ‘SQLReply’ is a variable with the data type
‘OleDbDataReader’, from the System.OleDb namespace. This variable is then set to the value of
‘cmd.ExecuteReader’ which effectively executes the SQL command on the database that is currently
connected.

This returns a series of results. A For-Loop is used to iterate through the results, within which, ‘.add’ is
used on the ‘OpenPositions’ list, with the value of each of the attributes set to the corrosponding value.
e.g.

.StockSymbol = Record.item("StockSymbol")

This sets the StockSymbol attribute of the new addition to OpenPositions equal to the value of
‘StockSymbol’ of the current item being iterated through.

After this For-Loop terminates, every open position that the user has will have been added to the list
‘OpenPositions’. From here, the open positions can be manipulated, appended, editted and displayed,
depending on what is required by the user.

INVESTU – J—H----- 140

FetchStockDetailsString – MainForm – Investu Development 2

This function is the same as seen in Development 1.

SplitStockInfo – MainForm – Investu Development 2

This function is the same as seen in Development 1.

BuyButton_Click – MainForm – Investu Development 2

This function is the same as seen in Development 1.

Function FetchStockDetailsString(ByVal StockSymbol As String)

Function SplitStockInfo(ByVal StringToSplit As String, ByVal DetailsToExtract As String)

Private Sub BuyButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles BuyButton.Click

INVESTU – J—H----- 141

UpdatePortolio – MainForm – Investu Development 2

The sub-routine ‘UpdatePortfolio’ is called to populate the visual display of the simulation with the open
positions of the user. It is called on load of the simulation and upon the execution of a new trade. It first
clears the visual display that holds the open positions, and then repopulates it with the contents of
‘OpenPositions’, along with relevant, recent information regarding prices.

Dim TotalTradePrice As Decimal
Dim CurrentTotalPrice As Decimal

Two variables that will be displayed are ‘TotalTradePrice’ – the total price of the shares at the time of the
execution of the trade, and ‘CurrentTotalPrice’ which is the total price of the shares at the current time.
This gives two different numbers, the difference between which will be the total profit or loss on that
particular position.

For l = 0 To OpenPositions.Count – 1
 …
Next

This For-Loop loops through every open position in ‘OpenPositions’

TotalTradePrice = Math.Round(((OpenPositions(l).StockValue *
OpenPositions(l).StockQuantity) / 100), 2)

Then, the value of ‘TotalTradePrice’ is calculated for each item inside the list. This is done by fetching the
value the ‘’StockValue’ property, of the current item in ‘OpenPositions’. This is then multiplied by the value
of the ‘StockQuantity’ property. This gives the total price of the trade in pence. This is divided by 100 and
rounded to give a value in pounds.

CurrentTotalPrice = Math.Round(((GetStockPrice(OpenPositions(l).StockSymbol) *
OpenPositions(l).StockQuantity) / 100), 2)

A similar process happens with ‘CurrentTotalPrice’, however this time the price is replaced by
‘GetStockPrice’ instead of the ‘StockValue’ property. This function takes a single argument: the stock
symbol of the stock being inspected. This is retrieved from OpenPositions, as it is one of the properties of
the items within the list. This function returns the current most recent price of the stock in question, which
is then multiplied by the quantity to give an updated total price.
OpenPositionsListBox.Items.Add(OpenPositions(l).StockName & " - Bought " &
OpenPositions(l).StockQuantity & " FOR £" & TotalTradePrice & " (" &

Sub UpdatePortfolio()

 Dim TotalTradePrice As Decimal
 Dim CurrentTotalPrice As Decimal

 OpenPositionsListBox.Items.Clear()

 For l = 0 To OpenPositions.Count - 1
 TotalTradePrice = Math.Round(((OpenPositions(l).StockValue *
OpenPositions(l).StockQuantity) / 100), 2)

 CurrentTotalPrice = Math.Round(((GetStockPrice(OpenPositions(l).StockSymbol)
* OpenPositions(l).StockQuantity) / 100), 2)
 OpenPositionsListBox.Items.Add(OpenPositions(l).StockName & " - Bought " &
OpenPositions(l).StockQuantity & " FOR " & TotalTradePrice & " (" &
OpenPositions(l).StockValue & " each)" & vbNewLine)
 Next

End Sub

INVESTU – J—H----- 142

OpenPositions(l).StockValue & " each) PROFIT=£" & CurrentTradePrice - TotalTradePrice
vbNewLine)

The item at index value ‘L’ of the list is then written to a list box called ‘OpenPositionsListBox’. An
example of the string that would be output would be as follows:

BARC.L – Bought 3450 FOR £45,600 (1,321 EACH) PROFIT=£2,346

SelectStockComboBox_SelectedIndexChanged – MainForm – Investu

Development 2

When the selected index of the ‘SelectedStock’ combo box is changed – e.g. the user selects a stock
symbol to inspect, this sub-routine triggers, due to its handle of
‘SelectStockComboBox.SelectedIndexChanged’. The code is similar to that in Version 1 of this sub-

routine, found in Development 1, with the addition of ‘Plot24hrData()’. This sub routine plots the data of
the last 24 hours of the stock data to the graph, read from the database.

Plot24hrData – MainForm – Investu Development 2

‘Plot24hrData’ uses an SQL query to retrieve the contents of the FetchDate and StockPrice columns from

the table ‘tblStockPriceHistory’. This table is the table into which ‘InvestuServerProgram’ inserts data for

stock prices, as discussed in the development of ‘InvestuServerProgram’ and the start of Development 2.

SELECT FetchDate, StockPrice FROM tblStockPriceHistory WHERE StockSymbol = '" &

SelectStockComboBox.SelectedItem & "' ORDER BY FetchDate

Private Sub SelectStockComboBox_SelectedIndexChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles SelectStockComboBox.SelectedIndexChanged

 Timer1.Interval = 1
 Timer1.Start()
 Series1.Points.Clear()
 Plot24hrData()
 End Sub

Public Sub Plot24hrData()

 Dim Query As String = "SELECT FetchDate, StockPrice FROM tblStockPriceHistory
WHERE StockSymbol = '" & SelectStockComboBox.SelectedItem & "' ORDER BY FetchDate"

 Using connection As New OleDbConnection(AccessDatabaseConnection)
 Dim command As New OleDbCommand(Query, connection)

 connection.Open()

 Dim reader As OleDbDataReader = command.ExecuteReader()

 While reader.Read()

 If reader(0) >= DateTime.Today Then
 PlotNewPoint((reader(0)).ToOADate(), reader(1))
 LastValue = reader(1)
 End If

 End While
 reader.Close()
 End Using
End Sub

INVESTU – J—H----- 143

The SQL command for this retrieval simply finds the rows in the table whose ‘StockSymbol’ value is the

same as the currently selected stock symbol (selected from the drop down box ‘SelectStockComboBox’)

and then retrieves the values of the columns ‘FetchDate’ and ‘StockPrice’ for those instances. The

information is ordered by ‘FetchDate’ to make sure that the information plotted to the graph is in

chronological order.

While reader.Read()
 If reader(0) >= DateTime.Today Then
 PlotNewPoint((reader(0)).ToOADate(), reader(1))
 LastValue = reader(1)
 End If
End While

After a standard database connection is established, and the command text set earlier is executed, a

While-Loop is initiated. This effectively loops through every row of information returned. Inside the loop is

a conditional which checks the value in reader(0) against the current time. The value in reader(0) is the

value of ‘FetchDate’. What this is essentially doing is only allowing data from the current day to be plotted

to the graph. This could be edited in further versions to be controllable by the user, however for this

development the graph will only show data for the current day of trading.

PlotNewPoint((reader(0)).ToOADate(), reader(1))
LastValue = reader(1)

Inside the conditional, the sub-routine ‘PlotNewPoint’ is called. This sub-routine takes two arguments – a

value for the X axis and a value for the Y axis, which in this case is the date and the price respectively.

Then, the value of a variable ‘LastValue’ is set to reader(0). This will be overwritten every loop, until the

final loop, meaning that the value after the loop exits will be the most recent price of the stock. Having this

value will be useful for manipulation of the graph visuals later.

PlotNewPoint – MainForm – Investu Development 2

This sub-routine adds a new point to the series called ‘Series1’, using values of the arguments ‘XValue’

and ‘YValue’ as the X and Y values respectively.

GetStockPrice – MainForm – Investu Development 2

This function is taken from the development of Investu Server Program at the start of Development 2.

GetStockChange – MainForm – Investu Development 2

This function is taken from the development of Investu Server Program at the start of Development 2.

Sub PlotNewPoint(ByVal XValue As Decimal, ByVal YValue As Decimal)
 Series1.Points.AddXY(XValue, YValue)
End Sub

Function GetStockPrice(ByVal StockSymbol As String)

Function GetStockChange (ByVal StockSymbol As String)

INVESTU – J—H----- 144

GetStockName – MainForm – Investu Development 2

This function is taken from the development of Investu Server Program at the start of Development 2.

ClosePositionbutton_Click – MainForm – Investu Development 2

The second development of this sub-routine develops on the idea of keeping records to keep track of the

users progress.

Function GetStockName(ByVal StockSymbol As String)

Private Sub ClosePositionsButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClosePositionsButton.Click

 Try
 Dim NewStockPrice As Decimal
 Dim SelectedStock As String = OpenPositionsListBox.SelectedIndex

 If OpenPositionsListBox.CheckedItems.Count = 1 Then
 NewStockPrice =
GetStockPrice(OpenPositions(SelectedStock).StockSymbol)
 Balance = Balance + (OpenPositions(SelectedStock).StockQuantity *
NewStockPrice)
 BalanceBox.Text = "£" & Math.Round((Balance / 100), 2)

 Dim CommandString As String

 If TeamMode Then
 CommandString = "UPDATE tblTeams SET tblTeams.Balance=" & Balance
& " WHERE tblTeams.TeamName='" & TeamName & "';"
 Else
 CommandString = "UPDATE tblUserInfo SET tblUserInfo.Balance=" &
Balance & " WHERE (((tblUserInfo.AccountID)=" & AccountID & "));"
 End If

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then
ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

 cmd.CommandText = CommandString
 cmd.ExecuteNonQuery()

 cmd.CommandText = "DELETE * FROM tblOpenPositions WHERE
OpenPositionID='" & OpenPositions(SelectedStock).OpenPositionID & "' "
 cmd.ExecuteNonQuery()
 ConnectionDb.Close()

 OpenPositions.RemoveAt(OpenPositionsListBox.SelectedIndex)
 UpdatePortfolio()
 Catch ex As Exception
 MsgBox(ex.ToString())
 End Try
End Sub

INVESTU – J—H----- 145

If OpenPositionsListBox.CheckedItems.Count = 1 Then

Else
 MsgBox("Please select the position you'd like to close.")
End If

A conditional first checks whether there is a selected position to close. If there are 0 or 2 or more selected

positions then the following code will throw an error, and so it is important that this is checked.

NewStockPrice = GetStockPrice(OpenPositions(SelectedStock).StockSymbol)
Balance = Balance + (OpenPositions(SelectedStock).StockQuantity * NewStockPrice)
BalanceBox.Text = "£" & Math.Round((Balance / 100), 2)

The following 3 lines of code work out new prices and balances. ‘NewStockPrice’ is set to the latest price

value of the current stock, retrieved using the ‘GetStockPrice’ function. Then, this value is mutliplied by

the stock quantity to work out the users new balance. Obviously, as this sub-routine represents the

execution of a sale, the value is added to the balance, not taken away like in the ‘BuyForm’ sub-routine.

Finally, the balance is formatted and displayed.

Dim CommandString As String

If TeamMode Then
 CommandString = "UPDATE tblTeams SET tblTeams.Balance=" & Balance & " WHERE
tblTeams.TeamName='" & TeamName & "';"
Else
 CommandString = "UPDATE tblUserInfo SET tblUserInfo.Balance=" & Balance & " WHERE
(((tblUserInfo.AccountID)=" & AccountID & "));"
End If

Similarly to other sub-routines, ClosePositionsButton_Click now incorporates a conditional to check the

value of ‘TeamMode’, and uses different SQL command texts depending on the value. If the player is in

team mode, then the following SQL is used:

UPDATE tblTeams SET tblTeams.Balance=" & Balance & " WHERE tblTeams.TeamName='" &

TeamName & "';

This command updates the balance of the team, by making use of the ‘UPDATE’ command in SQL. The

‘Balance’ column in ‘tblTeams’ is set to the value of ‘balance’ which was just changed in the previous few

lines of code. This change occurs where there is a match between the column value of ‘TeamName’ and

the ‘TeamName’ that is stored in the variable of the same name inside the simulation.

If the player is not in team mode, then alternative SQL is used:

UPDATE tblUserInfo SET tblUserInfo.Balance=" & Balance & " WHERE

(((tblUserInfo.AccountID)=" & AccountID & "));

This performs the same task, however uses updating the table ‘tblUserInfo’ instead of ‘tblTeams’. The

balance is set where the exists a match between the column ‘AccountID’ and the variable ‘AccountID’

within the simulation.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)

INVESTU – J—H----- 146

If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = CommandString
cmd.ExecuteNonQuery()

After the value of ‘CommandString’ is determined, the connection to the database is opened with the

standard connection procedure discussed in earlier sections. The command text is set to

‘CommandString’ and the NonQuery is executed. The balance has now been updated to reflect the

changes caused by the execution of the trade.

cmd.CommandText = "DELETE * FROM tblOpenPositions WHERE OpenPositionID='" &
OpenPositions(SelectedStock).OpenPositionID & "' "
cmd.ExecuteNonQuery()

ConnectionDb.Close()

Before the connection to the database is closed, another SQL command is executed. This one simple

deletes any trace of that position from the database, in order to keep the information in the table correct.

This is done with a ‘DELETE *’ SQL command, acting on the ‘OpenPositions’ table, where the ID’s of the

positions match.

OpenPositions.RemoveAt(OpenPositionsListBox.SelectedIndex)

The final two lines of code in this sub-routine are used for updating the visual display. Because of the fact

that the items in the list box are written using the items in the OpenPositions list, the index values of both

the list and box match. For example, OpenPositions(5) is the same item as is stored in

OpenPositionsListBox(5). Therefore, by removing knowing the index value of an item in the list box, the

index value of that item in the OpenPositions list is automatically known. This line uses the ‘.RemoveAt’

feature of lists which removes an item at a given index, the given index in this case being the index value

of the currently selected item in the list box.

UpdatePortfolio()

Now that an item has been removed from the ‘OpenPositions’ list, the index values of the box and the list

no longer match up. To rectify this, ‘UpdatePortfolio’ is called, which clears the box and rewrites the

contents from the ‘OpenPositions’ list.

INVESTU – J—H----- 147

LogoutButton_Click – MainForm – Investu Development 2

This sub routine simply allows the user to log out of their account. This is done by first showing the login

form, and then closing the main form, with ‘me.close()’

GraphScaleComboBox_SelectedIndexChanged – MainForm – Investu

Development 2

To make the user experience smoother, this sub-routine is called when the user selects a new stock

symbol from the drop down menu, and sets the timer interval to 1 millisecond. This effectively forces a

timer tick, causing the visual display to instantly update with information about the selected stock – this

stops the using having to wait for the timer to tick naturally, which could take up to 5 seconds.

OpenPositionsListBox_ItemCheck – MainForm – Investu Development 2

This routine is reused from Development 1. It ensures only one box can be checked at a time in

‘OpenPositionsListBox’. This will help to mitigate errors caused by users executing multiple trades at once.

 Private Sub LogoutButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles LogoutButton.Click

 LoginForm.Show()
 Me.Close()

 End Sub

Private Sub GraphScaleComboBox_SelectedIndexChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles GraphScaleComboBox.SelectedIndexChanged
 Timer1.Interval = 1
End Sub

Private Sub OpenPositionsListBox_ItemCheck(ByVal sender As Object, ByVal e As
System.Windows.Forms.ItemCheckEventArgs) Handles OpenPositionsListBox.ItemCheck

 If e.NewValue = CheckState.Checked Then

 For i As Integer = 0 To Me.OpenPositionsListBox.Items.Count - 1 Step 1
 If i <> e.Index Then Me.OpenPositionsListBox.SetItemChecked(i, False)
 Next
 End If
End Sub

INVESTU – J—H----- 148

CreateChart() – MainForm – Investu Development 2

This sub-routine is taken from Development 1.

GraphSettings()_SelectedIndexChanged – MainForm – Investu Development 2

These two sub-routines are reused from Development 1, and are responsible for creating and formatting

the graph when it is initialised upon loading into the simulation.

Sub CreateChart()

 Series1.Name = SelectStockComboBox.SelectedItem
 Series1.ChartType = SeriesChartType.Line
 Series1.BorderWidth = 4
 Chart1.Series.Add(Series1)
 Chart1.Legends.Clear()
 Series1.XValueType = ChartValueType.DateTime
 Series1.BorderWidth = 2

 End Sub

 Sub GraphSettings()

 Chart1.ChartAreas(0).AxisY.Minimum = LastValue - Val(GraphScaleComboBox.Text)
 Chart1.ChartAreas(0).AxisY.Maximum = LastValue + Val(GraphScaleComboBox.Text)
 Chart1.Update()

 End Sub

INVESTU – J—H----- 149

Testing 1 - Investu Server Program – Development 2

(The FTSE100 trading hours are between 9:00am and 16:29pm, so the server program would normally

only collect data between those times. For these tests, that time restrcition has been removed.)

Every sub-routine has been tested individually to ensure it works independently, however these tests

have not been shown. The tests displayed are tests that show multiple sub-routines and functions

working together to produce the desired outcome.

Test Objective Evidence O

b

j

e

c

t

i

v

e

s

m

e

t

?

INVESTU – J—H----- 150

Show that stock

information for

each stock

symbol in the

StockSymbols.cs

v file is queried

and the

information is

displayed

Above is the result of loading the program, clicking the ‘Start’ button, and waiting

around 20 seconds. The program has looped just over 20 times, indicating that the

idea of checking a new symbol every second is working correctly.

INVESTU – J—H----- 151

The program continues to fetch the data, incrementing through the symbols, all

the way to the end of the list.

This indicates that the requirements set out in the test description have been met

and the test has therefore been passed.

INVESTU – J—H----- 152

Show that the

when every

symbol has been

queried, the loop

resets, and the

first symbol is

queried again

The program nears the end of the list of symbols.

INVESTU – J—H----- 153

The program then resets back to the first symbol, and begins looping through

again. This indicates that the requirements set out in the test description have

been met and the test has therefore been passed.

Show that this

data is written to

the database

INVESTU – J—H----- 154

This indicates that the requirements set out in the test description have been met

and the test has therefore been passed.

Show that data

starts being

collected when

the FTSE100

opens for trading.

For the test, the server program will be left running from before 9:00am, until a few

minutes after 9:00am.

The table is currently empty as shown below:

And the server program is started at 8:06am:

INVESTU – J—H----- 155

After leaving the program for a while, data begins to enter the database. Notice

that the ‘FetchDate’ value for the first entry is ‘09:00:00’, and no data before,

despite the fact the program was started at 08:06:00am.

Show that the

program collects

the correct

amount of data

After 15 minutes of collecting data, the above image shows the final entries into

the database before 15 minutes has been elapsed.

INVESTU – J—H----- 156

After 15:00 minutes, there are 900 entries.

One entry is made into the database per second. 15 minutes is equivalent to 900

seconds. Therefore, there are the correct number of entries in the database.

This indicates that the requirements set out in the test description have been met

and the test has therefore been passed.

INVESTU – J—H----- 157

Show that data

for the current

day is plotted to

the graph in the

simulation

The server program was left to run for a while. Notice the ‘4587’ at the bottom –

this shows how many entries are in the database (around an hours worth of data)

Now, when the main simulation is loaded, the user is able to see graphs:

INVESTU – J—H----- 158

INVESTU – J—H----- 159

The previous two screenshots show the graphs for Antofagasta and Brit Amer

Tobacco.

INVESTU – J—H----- 160

Below are screenshots showing the graph feature working for various other

stocks.

INVESTU – J—H----- 161

Note that the scale box (A feature tested in Development 1) is different for each

screenshot – this is necessary to fit the graph on the the page (otherwise it would

be too zoomed in or too zoomed out)

This is demonstrated below, where the same stock as above is shown, but with a

smaller scale:

Despite being the same graph, the different scale means the second screenshot

is so zoomed in that half the data is off the graph. That is the reason why the scale

box is different for every screenshot.

INVESTU – J—H----- 162

INVESTU – J—H----- 163

Testing 1 – Investu Simulation – Development 2

Every sub-routine has been tested individually to ensure it works independently, however these tests

have not been shown. The tests displayed are tests that show multiple sub-routines and functions

working together to produce the desired outcome.

SignUpForm Testing 1

Test Objective Evidence Obje

ctive

s

met?

Show that sign up

attempt will be

accepted and an

account will be

written to the

database, when

tried with

standard inputs

Above is a screenshot of the table ‘tblUserInfo’ in the database, to show that

no accounts currently exist

We know that the regular expressions used require passwords to consist of 8

or more characters, with one upper case character and one number.

Therefore the password ‘Password1’ would be a valid password.

INVESTU – J—H----- 164

After pressing the ‘Create Account’ button, a confirmation message appears

to confirm that the account creation was successful. The account should now

appear in the database in the table ‘tblUserInfo’

And here we see that the account has successfully been written into the

database. This indicates that the requirements set out in the test description

have been met and the test has therefore been passed.

INVESTU – J—H----- 165

Show sign up is

rejected when

password does

not meet the

parameters of the

regular

expressions

This password is 9 characters with a number, but does not contain any

uppercase characters.

INVESTU – J—H----- 166

This password does not contain a number, but has 8 characters and an

uppercase letter

This password contains an uppercase letter and a number, but does not

have 8 characters.

INVESTU – J—H----- 167

Although the first three password tests were successful, a problem arises

when this string of random letters and characters is entered.

This is due to the fact the input contains apostrophes and brackets, which

effectively alter the SQL statement. The regular expressions will need to be

changed so that the user is not able to change the SQL, else the simulation

will be vulnerable to SQL injections, allowing users to change information

within the database.

INVESTU – J—H----- 168

Show that

accounts can only

be created if they

have a unique

username

Attempting to sign up with the username ‘Joe’ while there is already an

account in the database with the same name, produces this error:

This indicates that the requirements set out in the test description have been

met and the test has therefore been passed.

INVESTU – J—H----- 169

Show that

validation for

blank entries in

required fields

works correctly

This indicates that the requirements set out in the test description have been

met and the test has therefore been passed.

INVESTU – J—H----- 170

LoginForm Testing 1

Test Objective Evidence Obje

ctive

s

met?

Show that

accounts that

exist in the

database can be

signed, resulting

in the loading of

the main form

with the users

information

From the testing of ‘SignUpForm’ we know that there exists an account in the

database with the username ‘Joe’ and password ‘Password1’.

Attempting to sign in with this information gives the following result:

The simulation loads, with the username displayed, and the correct balance

INVESTU – J—H----- 171

in the ‘Current balance’ display box.

This indicates that the requirements set out in the test description have been

met and the test has therefore been passed.

Show that correct

username

incorrect

password

combination

results in a failed

login attempt

The password attempted here is ‘Password2’, whereas the correct password

for the account name with ‘Joe’ is ‘Password1’.

INVESTU – J—H----- 172

This produces this dialogue box.

A similar result is produced when the user tries to sign into an account with a

username that does not exist in the database:

INVESTU – J—H----- 173

INVESTU – J—H----- 174

Show that users

who are not in a

team cannot log

into their account

in team mode

To load the simulation in team mode, the ‘Team Mode’ check box is checked.

Because the user is not in a team, they are prompted with a dialogue box.

INVESTU – J—H----- 175

The user is then signed into their personal account.

This indicates that the requirements set out in the test description have been

met and the test has therefore been passed.

Show that a

designated admin

account will be

signed into admin

mode.

The ability to log into an admin account exists in Development 2, however the

functionality has not been added yet, as that will come later in the

development. Therefore, it is expected that the admin login will result in the

loading of a blank form.

To create an admin, we will manually change the value of ‘Admin’ in the

database.

Then, by loading signing into the account with the name ‘Joe’, the following is

displayed.

INVESTU – J—H----- 176

In future developments this form can be developmed to act as an admin

display page, with functionality allowing for the creation, manipulation and

analysis of teams.

This indicates that the requirements set out in the test description have been

met and the test has therefore been passed.

Show that users

can sign into

team accounts

Because the ability for teams to be created and users to join teams does not

exist yet, we will manually edit the database to test this functionality.

We will add this user to a team:

First, a team is created – notice the balance of ‘12345’, as opposed to the

balance of the account ‘Joe’, which is 1000000.

INVESTU – J—H----- 177

Next, the user ‘Joe’ is added to the team by creating a new entry in

‘tblTeamUsers’

This is a link table, linking the team to the user.

Now that the user is in a team, the user should be able to log into their team

account.

INVESTU – J—H----- 178

This produces the following display:

This time, the user’s team name is displayed along side their name, as well

as the team balance – notice the balance is taken from ‘tblTeams’ instead of

‘tblUserInfo’, as this is the team account.

This indicates that the requirements set out in the test description have been

met and the test has therefore been passed.

Show that users

of the same team

can log into the

same team

account

Two users have been created, ‘Joe’ and ‘Toe’.

They will be added to the following team:

The ID’s for the team and users are added to the link table to associate the

INVESTU – J—H----- 179

accounts with the team:

When signing into the account with the account named ‘Joe’, the following

dialogue appears:

When signing into the account named ‘Toe’ with team mode set to true, the

following dialogue appears:

Notice that both accounts are have ‘(TeamTest)’ – the name of their team,

after their name. Furthermore, the balance value for both accounts reflects

that of the team.

I believe this is sufficient evidence to conclude that the requirements set out

in the test description have been met and the test has therefore been passed.

INVESTU – J—H----- 180

MainForm Testing 1

Test Objective Evidence Obje

ctive

s

met?

Prove that a user

can sign in to

their account,

execute a trade,

and then log out,

and their

progress will be

saved

Initially, the balance of the account ‘Joe’ is £100,000 and the portfolio box is

empty:

Then, a trade is executed on the account:

INVESTU – J—H----- 181

Now, the simulation is closed

In the database, we can see that a position has been opened, with the

account ID 46, meaning that this trade was made by the account ‘Joe’.

This means that the trade has been successfully written into the database.

Upon loading the simulation again with the same account, the following is

displayed:

INVESTU – J—H----- 182

This indicates that the requirements set out in the test description have been

met and the test has therefore been passed.

Prove that a user

can log into a

team account,

execute a trade,

and then log out,

and their

progress will be

saved on their

team account

As shown in a previous test, the account ‘Joe’ has been made a member of

the team ‘TestTeam’. Signing into this account shows the following display:

INVESTU – J—H----- 183

After executing a trade, the following display is shown:

INVESTU – J—H----- 184

The simulation is now closed. The database shows as follows:

Upon reloading the account ‘Joe’ in team mode, the following display is

shown:

INVESTU – J—H----- 185

This indicates that the requirements set out in the test description have been

met and the test has therefore been passed.

Show that

members of the

same team can

both open and

close positions,

and the changes

will be visible to

The two accounts used for this test will be ‘Joe’ and ‘Toe’, which were added

to the team ‘TestTeam’ in a previous test. ‘Joe’ is loaded into team mode and

two trades are executed:

INVESTU – J—H----- 186

other users who

are logged into

the team account

Then, the simulation is closed and then reloaded. The account ‘Toe’ is signed

into, with team mode set to true:

INVESTU – J—H----- 187

The positions are then both closed by the account ‘Toe’:

INVESTU – J—H----- 188

Notice that the balance returns to £123.45, the same as before ‘Joe’

executed the two trades.

This indicates that the requirements set out in the test description have been

met and the test has therefore been passed.

INVESTU – J—H----- 189

Testing Findings - Investu Development 2

From the tests carried out on Development 2 we can see that the code runs largely as expected – the

goals determined at the start have been met, and the code appears to run cleanly. The errors that were

encountered appear to be at the sign up phase.

Specifically, these errors are:

1) When creating an account, the user has unrestricted access to special characters, including the

apostrophe and brackets. This leads to corruption of the SQL Insert statement responsible for

inserting the account into the database. Furthermore, this vulnerability leaves the simulation

sucesptible to SQL injections, which would allow the user to edit the database. To fix this, the

regular expression responsible for special characters must be changed to stop users using these

special characters.

INVESTU – J—H----- 190

Fixing Errors - Investu Development 2

These regular expressions determine the composition of the password. By changing this line:

If Specials.Matches(Password).Count < NumSpecial Then Return False

To:

If Specials.Matches(Password).Count >= 1 Then Return False

Then we can successfully prevent users from using special characters in their password.

The same must also be applied to the username, for the same reasons. To do this, a new function is

required, to check the number of special characters in the username.

This function can then be called in ‘ValidateUsername’, using a conditional.

Function ValidatePassword(ByVal Password As String, Optional ByVal MinLength As
Integer = 8, Optional ByVal NumUpper As Integer = 1, Optional ByVal NumLower As
Integer = 1, Optional ByVal NumNumbers As Integer = 1, Optional ByVal NumSpecial As
Integer = 0) As Boolean

 Dim UpperCase As New System.Text.RegularExpressions.Regex("\p{Lu}")
 Dim LowerCase As New System.Text.RegularExpressions.Regex("[a-z]")
 Dim Numbers As New System.Text.RegularExpressions.Regex("[0-9]")

 Dim Specials As New System.Text.RegularExpressions.Regex("[^a-zA-Z0-9]")

 If Len(Password) < MinLength Then Return False

 If UpperCase.Matches(Password).Count < NumUpper Then Return False
 If LowerCase.Matches(Password).Count < NumLower Then Return False
 If Numbers.Matches(Password).Count < NumNumbers Then Return False
 If Specials.Matches(Password).Count < NumSpecial Then Return Fals

 Return True
End Function

Function ContainsSpecialChars(ByVal NewUsername As String)

 Dim Specials As New System.Text.RegularExpressions.Regex("[^a-zA-Z0-9]")

 If Specials.Matches(NewUsername).Count = 0 Then
 Return False
 End If

 Return True

 End Function

INVESTU – J—H----- 191

Testing 2 - Investu Development 2

Trying to create an account with a special character in the password now returns an error:

Trying a username with a special character, but a valid password, returns this error:

INVESTU – J—H----- 192

Feedback #4 – Client – Investu Development 2

The end of the second development represents a fairly significant milestone in the creation of Investu,

and as such it seems appropriate to co-ordinate again with the client to ensure that the simulation is

headed in the expected direction, and the developments made are along the correct lines.

The following is an email exchange with the client.

Me

“Mr Butterworth,

Attached is instructions for accessing the simulation. Could you please have a look at the program and let

me know your thoughts regarding the progress so far? If you have any suggestions let me know.

Thanks,

Joe”

Client

“”Joe,

I’ve had a look at the program – very impressed! Looks really good so far. I made myself an account and

had a play. I showed a class of mine during a lesson and they seemed very interested. I have been

making some trades here and there and I’m very pleased that progress is saved now so that I can close it

and then come back later at the same position I left. I’m going to open some high-risk high-reward

positions and leave them for a few days – I’ll let you know how I get on.

Keep up the good work! Message me if you have any more questions or progress.

Thanks,

Gazza B.”

INVESTU – J—H----- 193

Final Conclusion – Investu Development 2

At the end of Development 1, a list of goals were laid out for Development 2. Those goals were as

follows:

“In the next development of the program the aim is to successfully connect the database to the program, allowing for

the storage of data related to the FTSE 100 and the user account. This will allow for a login system, as well as a

teams system and the ability to save information relating to these two features. Furthermore, once the database is

connected, it will be possible to begin collecting stock market data and storing it. This will require a small, additional

program, that will operate on a server 24/7 in order to collect data.”

Having finished Development 2, it is now clear that those goals have been successfully completed, as

shown through the analysis of the code and the testing of the development previously.

Furthermore, in the analysis of the simulation, a feature list and an objectives list was created using

feedback from the client and the user. Now that Development 2 has been implemented, we can see how

many of these criteria have been met, and analyse the goals for the third and final development of the

program.

(The items highlighted in green have been successfully implemented into Development 1, as shown in the

Development 1 testing phase in the previous section. The items highlighted in teal have been

successfully implemented into Development 2, as shown in the development 1 testing phase in the

previous section

• Ability to create and login to accounts (client)

• Ability to join and trade on a team account (client)

• Ability for users to be designated as admins (client)

• Ability for account progress on team and personal accounts to be saved between sessions

(inferred from client and user)

• Ability for admins to view teams list (inferred from client)

• Ability for admins to view team details and progress (inferred from client)

• Ability to view real-time information for all FTSE 100 stocks (client and user)

• Ability to select an amount of stocks and buy that amount using an up to date virtual balance, at

real current price (client/user)

• Display for all stocks currently held in portfolio (client/SIC)

• Ability to sell stocks in portfolio at real current price (client)

• Graphs to display current day price trends of all stocks (user)

• Graph to show all time price changes of all stocks (inferred from user)

• Ability to create price alerts and be notified when stock reaches current price (inferred from user)

• Interface allowing users to see all current alerts on their account (inferred from user)

• Interface allowing user to see entire trade history (SIC)

• Interface allowing user to see all stocks in the FTSE 100 in a single screen, with details such as

price (SIC)

•

• Notes section displayed in trade history and portfolio with reasons for trade decision (user)

INVESTU – J—H----- 194

Develop

ment 3

INVESTU – J—H----- 195

Database 3 – Investu – Development 3

The final version of the database has a slightly more complex structure compared to the previous

developments. This version incorporates all of the tables needed to create all of the features outlined in

the analysis.

The final additions to the database are as follows:

• tblTradeHistory – A table that keeps a log of all executed trades made in the simulation; both

buys and sales.

• tblAlerts – A table to keep track of Alerts that have been made

• tblStockDetails – A table consisting of all details of every stock in the FTSE100, including name,

price, symbol etc.

INVESTU – J—H----- 196

AdminView - Investu – Development 3

A key feature of Investu is the AdminView form – admin accounts are for teachers, and will allow for the

creation, monitoring, manipulation and analysis of teams by teachers. This will be an important aspect in

making Investu successful, as it will allow for teachers to monitor students and hone their trading skills.

AdminView_Load – AdminView – Investu Development 3

On the loading of the admin view form, only one routine is called – ‘FetchTeams’. This will access the

database and fetch a list of every possible team.

FetchTeams – AdminView – Investu Development 3

Public Class AdminView

 Dim AccessDatabaseConnection As String = MainForm.AccessDatabaseConnection

 Private Sub AdminView_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

 FetchTeams()
End Sub

 Sub FetchTeams()

 Dim TeamID As Integer
 Dim TeamInfo As String

 TeamInfoCheckedListbox.Items.Clear()
 TeamIdCheckedListBox.Items.Clear()

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()
 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT TeamID, TeamName, Balance, TeamCode FROM tblTeams"

 Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

 For Each Record In SQLReply
 TeamID = Record.item("TeamID")
 TeamIdCheckedListBox.Items.Add(TeamID)

 TeamInfo = Record.item("TeamName") & " - " & Record.Item("TeamCode") & "
- " & Record.item("Balance")
 TeamInfoCheckedListbox.Items.Add(TeamInfo)
 Next

 ConnectionDb.Close()
 End Sub

INVESTU – J—H----- 197

 FetchTeams works by querying the ‘tblTeams’ table in the database for the ID of each team and then

displaying their information into display boxes.

 Dim TeamID As Integer
 Dim TeamInfo As String

The two variables declared are ‘TeamID’ and ‘TeamInfo’. ‘TeamID’ is for the ID of the team, and

‘TeamInfo’ is for all other information such as name and balance. ‘TeamID’ needs to be its own separate

value with its own separate display box so that it can be used to query the database later. If it was

concatenated with the other information, then it would need to be extracted from that string later when it

was needed. Therefore, it has its own variable and display box.

 TeamInfoCheckedListbox.Items.Clear()
 TeamIdCheckedListBox.Items.Clear()

The visual display is cleared before the new information is written, to avoid duplication of data.

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()
 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

A standard database connection is initiated, using the access database connection from ‘MainForm’. The

connection to the database is opened by querying the connection state and then using

‘ConnectionDB.open’ if the state is found to be closed.

cmd.CommandText = "SELECT TeamID, TeamName, Balance, TeamCode FROM tblTeams"

The SQL statement is a simple Select command, that extracts 4 values from ‘tblTeams’.

For Each Record In SQLReply
 TeamID = Record.item("TeamID")
 TeamIdCheckedListBox.Items.Add(TeamID)

 TeamInfo = Record.item("TeamName") & " - " & Record.Item("TeamCode") & " - "
& Record.item("Balance")
 TeamInfoCheckedListbox.Items.Add(TeamInfo)
 Next

For every record returned by the SQL Select statement, a series of actions are carried out. First, the ID of

the team is assigned to the variable ‘TeamID’, defined earlier. Then, this ID value is added to its own

display box.

Then, the variable ‘TeamInfo’ is assigned the other information. This string is simply for display purposes

and won’t be used further. This is then added to a display box located horizontally along from the ID

display box, so that the information from the team relevant to the ID is displayed horizontally from the ID.

This will allow the admin to clearly see which information relates to which teams.

INVESTU – J—H----- 198

AdminView_Load – AdminView – Investu Development 3

One of the capabilities of the AdminViewForm is creating new teams. This sequence is started when the

admin clicks the ‘Create Team’ button. This takes the values of a series of input boxes and uses the data

to create a new team.

If ValidateInputs(TeamNameBox.Text, TeamCodeBox.Text) Then

 Else
 MsgBox("There was an error creating the new team. Your team name may already
be taken or you have entered invalid information.")
 End If

‘ValidateInputs’ is a sub-routine that ensures the data for the new team is in the correct format and will not

cause clashes in the database. If this check is failed, a message box prompt will appear informing the

user.

CreateNewTeam(TeamNameBox.Text, TeamCodeBox.Text)

If the validation function in the conditional returns true, then the sub-routine ‘CreateNewTeam’ is called,

which takes two arguments – the value of ‘TeamNameBox’ and ‘TeamCodeBox’.

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
 If ValidateInputs(TeamNameBox.Text, TeamCodeBox.Text) Then
 CreateNewTeam(TeamNameBox.Text, TeamCodeBox.Text)
 Else
 MsgBox("There was an error creating the new team. Your team name may
already be taken or you have entered invalid information.")
 End If
 End Sub

INVESTU – J—H----- 199

AdminView_Load – AdminView – Investu Development 3

If TeamNameBox.Text = "" Or TeamCodeBox.Text = "" Or BalanceBox.Text = "" Then

 Return False
 Else
 ….
 End If

The first validation check ensures that no input boxes are blank. If one is found to be blank, then the

function returns false.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

 cmd.CommandText = "SELECT TeamName, TeamCode FROM tblTeams"

If all of the input the boxes is not empty, then a connection is initialised.

SELECT TeamName, TeamCode FROM tblTeams

The SQL statement simply selects every ‘TeamName’ and ‘TeamCode’ from the ‘tblTeams’ table.

Function ValidateInputs(ByVal NewTeamName As String, ByVal NewTeamCode As String)

 If TeamNameBox.Text = "" Or TeamCodeBox.Text = "" Or BalanceBox.Text = "" Then

 Return False
 Else

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

 cmd.CommandText = "SELECT TeamName, TeamCode FROM tblTeams"

 Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

 For Each Record In SQLReply

 If Record.item("TeamName") = NewTeamName Or Record.item("TeamCode") =
NewTeamCode Then
 Return False
 End If
 Next

 End If
 Return True
 End Function

INVESTU – J—H----- 200

For Each Record In SQLReply

 If Record.item("TeamName") = NewTeamName Or Record.item("TeamCode") =
NewTeamCode Then
 Return False
 End If
Next

Then, a For-Loop loops through all of the team information returned and compares it to the data passed

to the function. If any data is found to match, it means that there is a collision and the code or name has

already been taken. This causes the function to return false.

INVESTU – J—H----- 201

CreateNewTeam – AdminView – Investu Development 3

One of the most important features of the AdminView form is the ability for teachers to create teams for

their students. This is done through the ‘CreateNewTeam’ sub-routine.

Dim Balance As Integer = BalanceBox.Text * 100

There is a section of the admin view form that has input boxes for the user to input information for a new

team. One of these boxes will take the value for the new teams balance.

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

A standard database connection is initialised in order to insert the new team information into the database.

cmd.CommandText = "INSERT INTO tblTeams (TeamName, TeamCode, Balance) VALUES ('" &
NewTeamName & "','" & NewTeamCode & "','" & Balance & "')"

The Insert statement takes 3 values and inserts them into ‘tblTeams’. These values are:

• TeamName – The name of the team that will be displayed to users

• TeamCode – The code needed by students to join teams. This is a 5 digit code that is effectively

a password, so that only the students with the code can join the team.

• Balance – The teams starting balance

MsgBox("A new team with the name " & NewTeamName & " and team code " & NewTeamCode & "
has been created.")

The admin is then informed that their team creation was successful.

Sub CreateNewTeam(ByVal NewTeamName As String, ByVal NewTeamCode As String)

 Dim Balance As Integer = BalanceBox.Text * 100

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

 cmd.CommandText = "INSERT INTO tblTeams (TeamName, TeamCode, Balance) VALUES
('" & NewTeamName & "','" & NewTeamCode & "','" & Balance & "')"
 cmd.ExecuteNonQuery()

 ConnectionDb.Close()

 MsgBox("A new team with the name " & NewTeamName & " and team code " &
NewTeamCode & " has been created.")

 FetchTeams()

 End Sub

INVESTU – J—H----- 202

Note that the input boxes used are the masked-input version of the textbox control. Each textbox has a

mask, that will only permit certain data to be written. This is a similar validation method to regular

expressions, without the need for more code. The masks for each box is as follows:

TeamNameBox

Mask – aaaaaaaaaaaaaa

This mask means that only alphanumeric characters can be entered into the box, as defined in the

VB.NET documentation below:

TeamCodeBox

Mask – LL000

This mask means that the first two characters must be capitalised letters, and the last three must be

numbers. The mask also means that the code must be 5 or less characters long.

The VB.NET documentation for L and 0 is shown below:

BalanceBox

Mask – 000000

This mask means that the balance box will only accept numbers between 0 and 9, and a maximum of 6.

INVESTU – J—H----- 203

TeamIDCheckedListBox_ItemCheck – AdminView – Investu Development 3

This sub-routine is taken from Development 1 and modified slightly. The sub-routine makes it so that both

list boxes are selected when one of them is selected. It also ensures that only one row can be selected at

a time, by unchecking all boxes when a new box is checked.

Private Sub TeamIdCheckedListBox_ItemCheck(ByVal sender As Object, ByVal box As
System.Windows.Forms.ItemCheckEventArgs) Handles TeamIdCheckedListBox.ItemCheck

 If box.NewValue = CheckState.Checked Then

 For index = 0 To TeamIdCheckedListBox.Items.Count - 1

 If index <> box.Index Then
 Me.TeamIdCheckedListBox.SetItemChecked(index, False)
 Me.TeamInfoCheckedListbox.SetItemChecked(index, False)
 Else
 TeamInfoCheckedListbox.SetItemChecked(index, True)
 End If

 Next

 End If

INVESTU – J—H----- 204

FetchTeamInfo – AdminView – Investu Development 3

 Sub FetchTeamInfo()

 TeamDetailsListBox.Items.Clear()

 Dim TeamID As Integer = TeamIdCheckedListBox.Text
 Dim Balance As Integer
 Dim TeamName As String = ""

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand
 Dim SQLReply As OleDbDataReader

 cmd = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT * FROM tblTeams WHERE TeamID=" & TeamID & ""

 SQLReply = cmd.ExecuteReader

 For Each Record In SQLReply

 TeamName = Record.item("TeamName")
 Balance = Record.item("Balance") / 100

 TeamDetailsListBox.Items.Add("You are viewing the details of " &
Record.item("TeamName") & " - Team Code: " & Record.Item("TeamCode"))

 TeamDetailsListBox.Items.Add("The team currently has £" & Balance)
 TeamDetailsListBox.Items.Add("")
 TeamDetailsListBox.Items.Add("The following are the members of this
team:")

 FetchUsersInTeam(TeamID)
 Next

 TeamDetailsListBox.Items.Add("")
 TeamDetailsListBox.Items.Add(TeamName & " has the following open positions;")

 cmd = ConnectionDb.CreateCommand

 cmd.CommandText = "SELECT * FROM tblOpenPositions WHERE TeamName='" & TeamName
& "'"

 SQLReply = cmd.ExecuteReader

 For Each Record In SQLReply
 TeamDetailsListBox.Items.Add(Record.item("StockSymbol") & " - " &
Record.item("StockQuantity") & " - " & Record.item("BuyPrice") & " - " &
Record.item("TradeDate"))
 Next

 End Sub

INVESTU – J—H----- 205

The sub-routine ‘FetchTeamInfo’ fetches the information regarding a team, when it is selected from the

display box. This allows the admin to look at their list of teams, then select one and receive a more

detailed breakdown of that team.

TeamDetailsListBox.Items.Clear()

The display box for team details is cleared, in case the information of another team is already displayed.

Dim TeamID As Integer = TeamIdCheckedListBox.Text
Dim Balance As Integer
Dim TeamName As String = ""

Three variables are declared. ‘TeamID’ is the value in the list box of ID’s. Because of the sub-routine

‘TeamIDCheckedListBox_ItemCheck’ we know that only one value in this box can ever be selected at

once. This means that the selected value is the only value checked, and so that ID is that of the team that

the user wants to query.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand
 Dim SQLReply As OleDbDataReader

 cmd = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT * FROM tblTeams WHERE TeamID=" & TeamID & ""

 SQLReply = cmd.ExecuteReader

A standard database connection is initialised for a Select statement. The statement, which is as follows:

SELECT * FROM tblTeams WHERE TeamID=" & TeamID & "

Selects all of the information relating to the team in question, that is stored in the table ‘tblTeams’.

For Each Record In SQLReply

 TeamName = Record.item("TeamName")
 Balance = Record.item("Balance") / 100

 TeamDetailsListBox.Items.Add("You are viewing the details of " &
Record.item("TeamName") & " - Team Code: " & Record.Item("TeamCode"))

 TeamDetailsListBox.Items.Add("The team currently has £" & Balance)
 TeamDetailsListBox.Items.Add("")
 TeamDetailsListBox.Items.Add("The following are the members of this team:")

 FetchUsersInTeam(TeamID)
Next

The data is then displayed into the information display box, for the admin to view.

The sub-routine called at the end ‘FetchUserInTeam’ takes an argument containing the value of ‘TeamID’,

which is used to list every member of the team into the display.

INVESTU – J—H----- 206

TeamDetailsListBox.Items.Add("")
TeamDetailsListBox.Items.Add(TeamName & " has the following open positions;")

After the first database connection finishes, a second one is opened. This time, the data relating to the

team that is found in a different table, ‘tblOpenPositions’ is written to the display. This cannot be done in a

single SQL statement as the team information For-Loop only loops once, whereas ‘tblOpenPositions’ will

typically contain many entries per team. The queries have therefore been split into two sections.

The lines of code above separate the display visually.

cmd.CommandText = "SELECT * FROM tblOpenPositions WHERE TeamName='" & TeamName & "'"

 SQLReply = cmd.ExecuteReader

 For Each Record In SQLReply
 TeamDetailsListBox.Items.Add(Record.item("StockSymbol") & " - " &
Record.item("StockQuantity") & " - " & Record.item("BuyPrice") & " - " &
Record.item("TradeDate"))
 Next

The second SQL query extracts relevant information from the ‘tblOpenPositions’ table. The statement

uses ‘SELECT *’ and so all information in the table is returned, where the condition is met. The condition

is this case looks for a match between the values of the ‘TeamName’ attribute and the value of the

variable ‘TeamName’. The reason the team ID is not used is because ‘tblOpenPositions’ writes a name

not an ID, which is possibly a design mistake that can be corrected in the development of ‘BuyForm’.

After the open positions of the team have been written, the display box contains all of the relevant

information for the team being queried.

INVESTU – J—H----- 207

FetchUsersInTeam – AdminView – Investu Development 3

‘FetchUsersInTeam’ uses cross table parameterized SQL to fetch the members of a team. The users are

connected to teams via a link table called ‘tblTeamUsers’.

SELECT tblUserInfo.Username FROM tblUserInfo, tblTeamUsers, tblTeams WHERE

tblTeams.TeamID=" & TeamID & " AND tblTeamUsers.TeamID = tblTeams.TeamID AND

tblTeamUsers.AccountID = tblUserInfo.AccountID

This SQL statement uses the link table to connect from ‘tblUserInfo’ to ‘tblTeams’. The value being

selected is ‘tblUserInfo.Username’. Values are needed from both ‘tblUserInfo’, ‘tblTeamUsers’ and

‘tblTeamUser’, and so both of them are in the ‘FROM’ section of the query.

The ‘WHERE’ section of the query contains three conditions that are connected via ‘AND’. Firstly, the

‘TeamID’ attribute in ‘tblTeams’ is matched to the ‘TeamID’ variable. Secondly, ‘tblTeamUsers.TeamID’ is

matched to that of ‘tblTeams.TeamID’. This will find all of the entries in the link table who have the

‘TeamID’ value of the required team. The ‘AccountID’ value of those accounts in the link table whose

‘TeamID’ matched, are then checked against the ‘AccountID’ attribute in the ‘tblUserInfo’ table.

The accounts who match all three of these checks have their username returned into the display box.

SQLReply = cmd.ExecuteReader

 For Each Record In SQLReply
 TeamDetailsListBox.Items.Add(Record.item("Username"))
 Next

This query is executed, and each reply is written to the display box.

 Sub FetchUsersInTeam(ByVal TeamID As Integer)

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand
 Dim SQLReply As OleDbDataReader

 cmd = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT tblUserInfo.Username FROM tblUserInfo, tblTeamUsers,
tblTeams WHERE tblTeams.TeamID=" & TeamID & " AND tblTeamUsers.TeamID =
tblTeams.TeamID AND tblTeamUsers.AccountID = tblUserInfo.AccountID"

 SQLReply = cmd.ExecuteReader

 For Each Record In SQLReply
 TeamDetailsListBox.Items.Add(Record.item("Username"))
 Next

 End Sub

INVESTU – J—H----- 208

MainForm - Investu – Development 3

MainForm_Load – MainForm – Investu Development 3

The loading of the main form is similar to that of Development 2, with the addition of a few lines of code.

These lines call various sub-routines for new features that are being added to enhance the user

experience.

FetchWorldNews()
FetchMarketNews()

These two sub-routines will display news for the user, both market specific and global news

FetchTradeHistory()
The trade history of an account can be useful to see which trades were made when, and the result of

each trade. This can help users by giving some context to their progress, and show them where they

made strong or poor trading decisions.

 Private Sub MainForm_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

 AccountID = LoginForm.AccountID
 TeamMode = LoginForm.TeamMode

 If TeamMode = True Then
 TeamName = LoginForm.TeamName
 LoginLabel.Text = "Welcome, " & LoginForm.Username & ". (" & TeamName &
")"
 ElseIf TeamMode = False Then
 TeamName = "0"
 LoginLabel.Text = "Welcome, " & LoginForm.Username & ""
 End If

 Balance = Math.Round(FetchBalance(), 2)
 BalanceBox.Text = "£" & Math.Round((Balance / 100), 2)

 FetchOpenPositions()
 FetchWorldNews()
 FetchMarketNews()
 FetchTradeHistory()
 LoadDetailsGrid()
 FetchAlerts()
 CreateChart()
 GraphSettings()

 GraphScaleComboBox.SelectedItem = "2"

 PopulateSymbolArray("C:\Users\Joe\Documents\visual studio 2010\Investu
Writeup\Development 3\StockSymbols.csv")
 For L = 0 To Symbols.Count - 1
 SelectStockComboBox.Items.Add(Symbols(L))
 Next
 End Sub

INVESTU – J—H----- 209

LoadDetailsGrid()

This sub-routine will provide an easy-to-understand display of the information of all of the companies in

the FTSE100.

FetchAlerts()

This sub-routine will provide a display with the alerts a user has.

PopulateSymbolArray – MainForm – Investu Development 3

The code for this sub-routine can be found in Development 2 on page 135.

FetchAlerts – MainForm – Investu Development 3

Development 3 will allow for the creation of alerts. An alert can be set for a specific stock price, and the

user will receive an email notification when the stock price is reached. This will allow users to be alerted

when it’s a good time to buy or sell a stock, so that they don’t miss out on good trading opportunities.

 Public Sub PopulateSymbolArray(ByVal FilePath As String)

 Sub FetchAlerts()

 Dim QueryString As String

 If TeamMode Then
 QueryString = "SELECT * FROM tblAlerts WHERE TeamName='" & TeamName &
"'"
 Else
 QueryString = "SELECT * FROM tblAlerts WHERE TeamName='0' AND
AccountID=" & AccountID & ""
 End If

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = QueryString
 Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

 For Each Record In SQLReply
 If TeamMode Then
 AlertsListBox.Items.Add(GetNameUsingID(Record.item("AccountID")) & "
- " & Record.item("StockSymbol") & " - " & Record.item("AlertPrice"))
 Else
 AlertsListBox.Items.Add(Record.item("StockSymbol") & " - " &
Record.item("AlertPrice"))
 End If
 Next
 ConnectionDb.Close()
 End Sub

INVESTU – J—H----- 210

If TeamMode Then
 QueryString = "SELECT * FROM tblAlerts WHERE TeamName='" & TeamName & "'"
 Else
 QueryString = "SELECT * FROM tblAlerts WHERE TeamName='0' AND AccountID=" &
AccountID & ""
 End If

It first needs to be clarified whether or not the user is in team mode or their personal account. If they are

on team mode, then the SQL query needs to search for the alerts that were made on that team account.

Otherwise, the simulation needs to only retrieve the alerts made on a that account when it was not in

team mode. In this simulation, that is signified by a team name of ‘0’.

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = QueryString

INVESTU – J—H----- 211

Timer1_Tick – MainForm – Investu Development 3

This sub-routine is only slightly different to the same sub-routine in the second development.

LoadDetailsGrid()

This being added to the timer-tick simulation keeps the details grid updated and relevant. This means that

the grid is kept up to date with the prices displayed in the details boxes on inspection of specific stocks.

Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Timer1.Tick

 Dim StockInfoString

 Try
 Timer1.Interval = 60000

 StockInfoString =
FetchStockDetailsString(SelectStockComboBox.SelectedItem)

 NameBox.Text = SplitStockInfo(StockInfoString, "Name")
 PriceBox.Text = SplitStockInfo(StockInfoString, "Price")
 ChangeBox.Text = SplitStockInfo(StockInfoString, "Change")

 Series1.Points.Clear()
 Plot24hrData()
 LoadDetailsGrid()
 UpdatePortfolio()
 GraphSettings()

 VolatilityBox.Text = CalculateVolatility(PriceBox.Text, ChangeBox.Text)
& "%"
 Catch ex As Exception
 MsgBox(ex.ToString())
 End Try

 End Sub

INVESTU – J—H----- 212

FetchTradeHistory – MainForm – Investu Development 3

‘FetchTradeHistory’ takes the entire history of every trade made of the current account and displays them

in a ‘DataGridView’ display.

Dim MyConnection As OleDbConnection

The data will be read directly from the database. To do this a series of variables are declared. The first of

which is a standard database connection, declared as ‘OleDbConnection’ type from the ‘OleDb’

namespace.

Sub FetchTradeHistory()

 Dim MyConnection As OleDbConnection
 Dim Adapter As OleDbDataAdapter
 Dim DataSet As DataSet
 Dim Tables As DataTableCollection
 Dim Source As New BindingSource

 MyConnection = New OleDbConnection
 MyConnection.ConnectionString = AccessDatabaseConnection
 DataSet = New DataSet
 Tables = DataSet.Tables

 If TeamMode Then
 Adapter = New OleDbDataAdapter("SELECT * FROM tblTradeHistory WHERE
TeamName='" & TeamName & "'", MyConnection)
 Else
 Adapter = New OleDbDataAdapter("SELECT * FROM tblTradeHistory WHERE
AccountID=" & AccountID & " AND TeamName='0'", MyConnection)
 End If

 Adapter.Fill(DataSet, "[tblTradeHistory]")
 Dim View As New DataView(Tables(0))
 Source.DataSource = View
 DataGridView1.DataSource = View

 DataGridView1.Columns(0).Width = 50
 DataGridView1.Columns(1).Width = 50
 DataGridView1.Columns(2).Width = 50
 DataGridView1.Columns(3).Width = 75
 DataGridView1.Columns(4).Width = 75
 DataGridView1.Columns(5).Width = 125
 DataGridView1.Columns(6).Width = 50
 DataGridView1.Columns(7).Width = 50
 DataGridView1.Columns(8).Width = 80

 End Sub

INVESTU – J—H----- 213

Dim DataSet As DataSet

The dataset extracted from the database will be stored in a variable called ‘DataSet’ of the ‘DataSet’ data

type.

Dim Adapter As OleDbDataAdapter

The variable ‘Adapter’ of the adapter data type. Adapters are used to interact with existing data sources.vii

Dim Tables As DataTableCollection

When the adapter is used to convert the data from the database into the simulation, it will need

somewhere to put the data. This will be a table represented by the variable ‘Tables’ of the

‘DataTableCollection’ data type.

Dim Source As New BindingSource

The ‘BindingSource’ class encapsulates the data source of a form. The variable ‘Source’ will be used as a

data source for the data in the table.

MyConnection = New OleDbConnection
MyConnection.ConnectionString = AccessDatabaseConnection

A new connection is created to the database. This connection uses a new instance of ‘MyConnection’ and

then ‘ConnectionString’ together.

DataSet = New DataSet
Tables = DataSet.Tables

A new dataset is created. The variable ‘Tables’ is assigned the value ‘Dataset.Tables’. ‘Dataset.Tables’

represents the collection of tables contained within the dataset.

 If TeamMode Then
 Adapter = New OleDbDataAdapter("SELECT * FROM tblTradeHistory WHERE
TeamName='" & TeamName & "'", MyConnection)
 Else
 Adapter = New OleDbDataAdapter("SELECT * FROM tblTradeHistory WHERE
AccountID=" & AccountID & " AND TeamName='0'", MyConnection)
 End If

Similarly to in previous sub-routines. The value of the SQL query is dependent on whether or not the user

is in team mode or not.

A new instance of an adapter takes two arguments: an SQL query and a connection string. In the case of

team mode being true, the SQL query will select all of the information from the table ‘tblTradeHistory’

where the team name is that of the user. If it is not true, then only the trades from the user are selected.

Adapter.Fill(DataSet, "[tblTradeHistory]")

INVESTU – J—H----- 214

The ‘.Fill’ method of the adapter takes two arguments: A dataset, and a data source. The data source is

then mapped onto the dataset using the criteria of the SQL expression in the adapter.

Dim View As New DataView(Tables(0))
 Source.DataSource = View
 DataGridView1.DataSource = View

‘View’ is declared as a new instance of the class ‘DataView’. The ‘adapter.Fill’ command fills data into

tables, beginning at 0. Because the query would only return a single dataset, the data that is required will

be in table 0. This data is assigned to ‘View’. ‘View’ is then made the data source of the data grid view,

and hence the data in the database is displayed into the data grid view within the simulation.

….

DataGridView1.Columns(3).Width = 75
DataGridView1.Columns(4).Width = 75
DataGridView1.Columns(5).Width = 125
DataGridView1.Columns(6).Width = 50
….

The display of the data grid view is then changed to best fit the simulation, for ease of viewing.

LoadDetailsGrid – MainForm – Investu Development 3

The purpose of the ‘DetailsGrid’ is to display the details of all of the stock symbols in the

‘StockSymbols.csv’ file. This is done in the same way as the previous sub-routine, however using a

different query.

Adapter = New OleDbDataAdapter("SELECT * FROM [tblStockDetails]", MyConnection)

 Sub LoadDetailsGrid()

 Dim MyConnection As OleDbConnection
 Dim Adapter As OleDbDataAdapter
 Dim DataSet As DataSet
 Dim Tables As DataTableCollection
 Dim Source As New BindingSource

 MyConnection = New OleDbConnection
 MyConnection.ConnectionString = AccessDatabaseConnection
 DataSet = New DataSet
 Tables = DataSet.Tables
 Adapter = New OleDbDataAdapter("SELECT * FROM [tblStockDetails]",
MyConnection)
 Adapter.Fill(DataSet, "tblStockDetails")
 Dim View As New DataView(Tables(0))
 Source.DataSource = view
 StockDetailsGrid.DataSource = view

 StockDetailsGrid.Columns(4).Width = 187
 End Sub

INVESTU – J—H----- 215

This time, the adapter query is a simple select-all statement, that takes all of the information from the

‘tblStockDetails’ table. This is not dependent on any criteria – all of the data is always pulls every time the

sub-routine is called. For optimisation in later developments, it could be made to only pull information that

has changed. For example, it is unlikely that the symbols themselves have changed, and so pulling the

entire contents of the ‘symbol’ attribute in the table seems like a waste of processing power, when the

symbols themselves will not have changed since the last time the sub-routine was called. This, however,

will be a development for a later version of the simulation.

Adapter.Fill(DataSet, "tblStockDetails")

The adapter is filled with data from the table ‘tblStockDetails’ and then the information is displayed in a

data grid view in a tab inside the simulation.

CalculateVolatility – MainForm – Investu Development 3

The code for this sub-routine can be found in Development 2.

FetchBalance – MainForm – Investu Development 3

The code for this sub-routine can be found in Development 2.

FetchStockDetailsString – MainForm – Investu Development 3

The code for this sub-routine can be found in Development 2.

Function CalculateVolatility(ByVal Price As Decimal, ByVal Change As Decimal)

Function FetchBalance()

Function FetchStockDetailsString(ByVal StockSymbol As String)

INVESTU – J—H----- 216

FetchMarketNews – MainForm – Investu Development 3

‘FetchMarketNews’ employs the ‘System.XML’ import again to extract information from an XML newsfeed

about the FTSE100 and display it in the simulation.

WebBrowser2.DocumentText = ""

The sub-routine will use a web browser, which is an object in VB that can display web information.

Instead of simply giving a URL for the web browser, we can extract HTML data within the XML and then

write it directly into the document text of the browser, which will give only the relevant stock information,

instead of loading the whole webpage, which is a slow process in VB, especially when loading pages

heavily laden with ads.

Dim StockNews As String = ""

‘StockNews’ is a variable which will be given the data that needs to be written to the web browser.

Sub FetchMarketNews()

 WebBrowser2.DocumentText = ""

 Dim StockNews As String = ""

 Try
 Dim Document As XmlDocument
 Dim DescriptionNodes As XmlNodeList

 Document = New XmlDocument()

document.Load("https://finance.google.com/finance/company_news?q=INDEXFTSE:UKX&ei=Hy
nOWZC1MpKKUunwl-gF&output=rss")

 DescriptionNodes = Document.GetElementsByTagName("description")

 For L = 1 To DescriptionNodes.Count - 1
 Stocknews += DescriptionNodes.Item(L).InnerText

 Next

 WebBrowser2.DocumentText = StockNews

 Catch ErrorVariable As Exception

 MsgBox(ErrorVariable.ToString())
 End Try

 End Sub

INVESTU – J—H----- 217

Try

…

Catch ErrorVariable As Exception

 MsgBox(ErrorVariable.ToString())
End Try

This section of code may be particularly prone to errors as it relies on data extracted from an external

source. The XML data that is parsed cannot be controlled or guaranteed to be parsed correctly, which

could cause errors when it is decoded in the simulation. A try-catch eliminates the chances of this causing

problems for the users of the simulation.

Dim Document As XmlDocument
Dim DescriptionNodes As XmlNodeList
Document = New XmlDocument()

Within the try-catch, two variables are declared and a new instance of the class ‘XmlDocument’ is created.

‘DescriptionNodes’ will be a list of nodes that contain the news that will be written to the web browser.

document.Load("https://finance.google.com/finance/company_news?q=INDEXFTSE:UKX&ei=HynOWZC
1MpKKUunwl-gF&output=rss")

The document loaded is from an RSS feed on finance.google.com.

DescriptionNodes = Document.GetElementsByTagName("description")

From the document that was just loaded, the ‘GetElementsByTagName’ method is called. This takes a

single argument: The name of the elements to be indexed. This list of elements is stored in the variable

‘DescriptionNodes’.

For L = 1 To DescriptionNodes.Count - 1
 Stocknews += DescriptionNodes.Item(L).InnerText
Next

Once the list of nodes is retrieved, they are looped through using a For-Loop. This loop goes through all

of the elements and appends them to the variable ‘StockNew’, by using the ‘InnerText’ method on the

element. This method is used to get the text contained within the element. In this case, this text is the

actual story in the news article.

WebBrowser2.DocumentText = StockNews

The document text of the web browser is then set to the variable ‘StockNews’ which now contains all of

the news that has been extracted from the XML.

INVESTU – J—H----- 218

FetchWorldNews – MainForm – Investu Development 3

‘FetchWorldNews’ is a sub-routine with the same purpose – to display news to the user. However, this

sub-routine fetches world news, instead of market specific news. The purpose of displaying this for the

user is to enhance the trading experience and allow users to gauge the current world climate and then

extrapolate its impact on the market.

The sub-routine works in much the same way, with a few differences.

Dim TitleNodes, DescriptionNodes, LinkNodes, ArticleNodes As XmlNodeList

In the previous sub-routine, the news was packaged helpfully into description nodes, that could be simply

extracted. This news source has their data parsed into different XML nodes, which means more nodes

need to be indexed and searched for data. These nodes are: ‘TitleNodes’ for the title of the articles,

‘DescriptionNodes’ for the description of the article, ‘LinkNodes’ for the URL of the article to allow the

users to follow a link and read more on a certain story, and ‘ArticleNodes’, which contain the publish date

of the article.

Sub FetchWorldNews()

 WebBrowser1.DocumentText = ""
 Dim StockNews As String = ""

 Try
 Dim document As XmlDocument
 Dim TitleNodes, DescriptionNodes, LinkNodes, ArticleNodes As XmlNodeList

 document = New XmlDocument()
 document.Load("http://feeds.bbci.co.uk/news/world/rss.xml")

 TitleNodes = document.GetElementsByTagName("title")
 DescriptionNodes = document.GetElementsByTagName("description")
 LinkNodes = document.GetElementsByTagName("link")
 ArticleNodes = document.GetElementsByTagName("pubDate")

 For L = 0 To 25

 stocknews += "" & "" & TitleNodes.Item(L
+ 2).InnerText & " " & "" & ""
 stocknews += "" &
ArticleNodes.Item(L).InnerText & "" & "
"
 stocknews += DescriptionNodes.Item(L + 1).InnerText & "
"
 stocknews += "" & "Read more at " &
LinkNodes.Item(L + 2).InnerText & "" & "

"
 Next

 WebBrowser1.DocumentText += StockNews
 Catch errorVariable As Exception

 MsgBox(errorVariable.ToString())
 End Try

 End Sub

INVESTU – J—H----- 219

TitleNodes = document.GetElementsByTagName("title")
DescriptionNodes = document.GetElementsByTagName("description")
LinkNodes = document.GetElementsByTagName("link")
ArticleNodes = document.GetElementsByTagName("pubDate")

Similarly to the previous sub-routine, the nodes are then fetched from the XML using a tag name, which is

the name inside the XML used to identify each section of data.

For L = 0 To 24

 stocknews += "" & "" & TitleNodes.Item(L +
2).InnerText & " " & "" & ""
 stocknews += "" & ArticleNodes.Item(L).InnerText
& "" & "
"
 stocknews += DescriptionNodes.Item(L + 1).InnerText & "
"
 stocknews += "" & "Read more at " &
LinkNodes.Item(L + 2).InnerText & "" & "

"
 Next

This particular news site has many articles. Instead of listing all of them, only the top 24 will be displayed.

Therefore the For-Loop loops 25 times. Inside the loop, the information from each of the node lists is

output. The information is formatted using HTML, because the information will be inserted into the

document text of the web browser.

WebBrowser1.DocumentText += StockNews

The information in the new ‘StockNews’ string, containing the information for all 25 news stories, is added

to the document text of the web browser, and therefore displayed for the user to view in the simulation.

SplitStockInfo – MainForm – Investu Development 3

The code for this sub-routine can be found in Development 1 on page 66

Function SplitStockInfo(ByVal StringToSplit As String, ByVal DetailsToExtract As
String)

INVESTU – J—H----- 220

BuyButton_Click – MainForm – Investu Development 3

The code for this sub-routine can be found in Development 2 on page 140.

SelectStockComboBox_SelectedIndexChang – MainForm – Investu Development

3

The code for this sub-routine can be found in Development 2 on page 142.

Plot24hrData – MainForm – Investu Development 3

The code for this sub-routine can be found in Development 2 on page 142.

PlotNewPoint – MainForm – Investu Development 3

The code for this sub-routine can be found in Development 2 on page 143.

GetStockChange – MainForm – Investu Development 3

The code for this sub-routine can be found in Development 2 on page 115.

GetStockPrice – MainForm – Investu Development 3

The code for this sub-routine can be found in Development 2 on page 117.

Private Sub BuyButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)

Private Sub SelectStockComboBox_SelectedIndexChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles SelectStockComboBox.SelectedIndexChanged

 Public Sub Plot24hrData()

 Sub PlotNewPoint(ByVal XValue As Decimal, ByVal YValue As Decimal)

 Function GetStockChange(ByVal StockSymbol As String)

 Function GetStockPrice(ByVal StockSymbol As String)

INVESTU – J—H----- 221

GetStockName – MainForm – Investu Development 3

The code for this sub-routine can be found in Development 2 on page 116.

ClosePositionsButton_Click – MainForm – Investu Development 3

The code for this sub-routine can be found in Development 2 on page 144.

InfoButton_Click – MainForm – Investu Development 3

As a way of providing more information to the user regarding their current investments, ‘InfoButton’ allows

users to inspect a position and look at some information regarding it.

Dim SelectedStock As String = OpenPositionsListBox.SelectedIndex

Dim Value As Decimal = OpenPositions(SelectedStock).StockValue
Dim StockName As String = OpenPositions(SelectedStock).StockName
Dim Quantity As String = OpenPositions(SelectedStock).StockQuantity
Dim StockSymbol As String = OpenPositions(SelectedStock).StockSymbol

The variables here represent some information about a position. The information is fetched from the

‘OpenPositions’ list, which contains information of all of the currently open positions.

Private Sub InfoButton_Click(sender As System.Object, e As System.EventArgs) Handles
InfoButton.Click

 Dim SelectedStock As String = OpenPositionsListBox.SelectedIndex

 Dim Value As Decimal = OpenPositions(SelectedStock).StockValue
 Dim StockName As String = OpenPositions(SelectedStock).StockName
 Dim Quantity As String = OpenPositions(SelectedStock).StockQuantity
 Dim StockSymbol As String = OpenPositions(SelectedStock).StockSymbol

 Dim CurrentTotalPrice As Decimal = Math.Round(((GetStockPrice(StockSymbol) *
Quantity) / 100), 2)
 Dim TotalTradePrice As Decimal = Math.Round(((Value * Quantity) / 100), 2)

 MsgBox("You bought" & Quantity & " " & StockName & " shares for a price of "
& Value & " each, costing a total of £" & TotalTradePrice & ". " & vbNewLine &
StockName & " shares are now worth " & GetStockPrice(StockSymbol) & " each, making
your shares worth a total of £" & CurrentTotalPrice & "." & vbNewLine & "Your net
gain from this trade is £" & TotalTradePrice - CurrentTotalPrice & ".")
 End Sub

 Function GetStockName(ByVal StockSymbol As String)

Private Sub ClosePositionsButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClosePositionsButton.Click

INVESTU – J—H----- 222

Dim CurrentTotalPrice As Decimal = Math.Round(((GetStockPrice(StockSymbol) * Quantity) /
100), 2)
Dim TotalTradePrice As Decimal = Math.Round(((Value * Quantity) / 100), 2)

Some calculations are performed to get the total value of the trade when it was made and then the

current total price.

 MsgBox("You bought" & Quantity & " " & StockName & " shares for a price of " &
Value & " each, costing a total of £" & TotalTradePrice & ". " & vbNewLine & StockName &
" shares are now worth " & GetStockPrice(StockSymbol) & " each, making your shares worth
a total of £" & CurrentTotalPrice & "." & vbNewLine & "Your net gain from this trade is
£" & TotalTradePrice - CurrentTotalPrice & ".")

The information is then displayed to the user.

StoreNewTrade_Click – MainForm – Investu Development 3

One of the new features added to Development 3 is the trade history of an account. This is done by

storing the details of a buy or sell each time it is made. The information is stored into a table called

‘tblTradeHistory’. It could be argued that this will make ‘tblOpenPositions’ redundant as there will now be

duplication of data, e.g. the same trade information is ‘tblTradeHistory’ as well as ‘tblOpenPositions’. This

may be the case, however time constraints mean merging the tables is impractical at this stage.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)

Sub StoreNewTrade(ByVal OpenPositionID As String, ByVal CurrentPrice As Integer)

 Dim InsertString As String = ""

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT StockSymbol, StockQuantity FROM tblOpenPositions
WHERE OpenPositionID='" & OpenPositionID & "'"
 Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

 For Each Record In SQLReply
 InsertString = "INSERT INTO tblTradeHistory (AccountID, StockSymbol,
StockQuantity, BuyOrSell, TradePrice, TradeDate, TeamName) VALUES ('" & AccountID &
"','" & Record.item("StockSymbol") & "','" & Record.item("StockQuantity") &
"','Sell','" & CurrentPrice & "','" & DateTime.Now & "','" & TeamName & "')"
 Next

 SQLReply.Close()

 cmd.CommandText = InsertString
 cmd.ExecuteNonQuery()
 ConnectionDb.Close()
 End Sub

INVESTU – J—H----- 223

If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

A standard connection is initiated to the database. From here, data will be retrieved that can then be

inserted into the database. This data needs to be extracted from the database first because only some of

the data is available in the simulation – but we can use the information we have to get the rest of the

information from the database.

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT StockSymbol, StockQuantity FROM tblOpenPositions WHERE
OpenPositionID='" & OpenPositionID & "'"

The Select statement fetches the symbol and quantity from the database using the primary key for that

table.

Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

For Each Record In SQLReply
 InsertString = "INSERT INTO tblTradeHistory (AccountID, StockSymbol,
StockQuantity, BuyOrSell, TradePrice, TradeDate, TeamName) VALUES ('" & AccountID & "','"
& Record.item("StockSymbol") & "','" & Record.item("StockQuantity") & "','Sell','" &
CurrentPrice & "','" & DateTime.Now & "','" & TeamName & "')"
Next

The query is executed. From the reply, a new string is created. This string will be a new SQL statement,

for an insert in ‘tblTradeHistory’. The values returned from the previous query and used as inputs for this

new query. The sub-routine is called on closing the position, and so the value for ‘BuyOrSell’ can be hard

wired as ‘Sell’. The other data is retrieved from the arguments passed to the sub-routine and from

information returned from the query.

SQLReply.Close()

cmd.CommandText = InsertString
cmd.ExecuteNonQuery()
ConnectionDb.Close()

Once the ‘InsertString’ value has been set, the reply is closed. The new value of the command text is now

‘InsertString’. This is not a query, and so can simply be executed with the ‘ExecuteNonQuery’ method.

The connection is then closed and the process of storing new trade information into the table

‘tblTradeHistory’ is complete.

INVESTU – J—H----- 224

CreateAlertButton_Click – MainForm – Investu Development 3

The alerts system will work by providing a small interface in which the user can put a price. There will be

a button, which when activated, will call the above sub-routine.

Dim UpOrDown As String

The variable ‘UpOrDown’ is used as an identifier, so that the simulation knows whether the user has set a

price above the current price – meaning they want to be alerted when the stock price goes above that

price, or a price below the current price, meaning they want to be alerted when the stock price goes

below that price.

For example, if the current stock price is 100, and the user sets an alert price of 105, then it is clear that

the user wants to be alerted when the stock price reaches 105 or above. This is necessary so that the

simulation knows which comparison to make on the current price and the alert price, e.g. knows when to

compare the data with a less than symbol or greater than symbol.

If SelectStockComboBox.Text <> "Select Stock Symbol" Then
 ….
Else
 MsgBox("You need to select a stock from the drop down menu first.")
End If

A conditional is used to ensure that there is a stock symbol selected – otherwise the simulation would not

know which symbol to apply the alert to.

If AlertPriceBox.Text > PriceBox.Text Then
 UpOrDown = "UP"
Else
 UpOrDown = "DOWN"
End If

Private Sub CreateAlertButton_Click(sender As System.Object, e As System.EventArgs)
Handles CreateAlertButton.Click

 Dim UpOrDown As String

 If SelectStockComboBox.Text <> "Select Stock Symbol" Then
 If AlertPriceBox.Text > PriceBox.Text Then
 UpOrDown = "UP"
 Else
 UpOrDown = "DOWN"
 End If

 CreateNewAlert(UpOrDown)
 AlertsListBox.Items.Clear()
 FetchAlerts()
 Else
 MsgBox("You need to select a stock from the drop down menu first.")
 End If
 End Sub

INVESTU – J—H----- 225

Within the conditional, another conditional works out the value of ‘UpOrDown’. If the price of the alert is

above the current price, then ‘UpOrDown’ is set to ‘Up’ – the user is waiting for the price to go up to that

price. If the value of the alert price is less than the current price, then ‘UpOrDown’ is set to ‘Down’ – the

user is waiting for the price to go down to that price.

CreateNewAlert(UpOrDown)

Once the value of ‘UpOrDown’ is set, it is passed as an argument to the sub-routine ‘CreateNewAlert’.

This will add the alert to the database.

AlertsListBox.Items.Clear()
FetchAlerts()

The visual display for the alerts is cleared and then ‘FetchAlerts’ is called to re-populate it, in order to

refresh the display with the newly added alert.

INVESTU – J—H----- 226

CreateNewAlert – MainForm – Investu Development 3

If ValidateAlertPrice(AlertPriceBox.Text) Then
 …..
Else
 MsgBox("Please enter a valid alert price.")
End If

The price that will be used as the alert price is first validated to ensure it is a valid value.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

A new connection to the database is initiated.

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = "INSERT INTO tblAlerts (AccountID, StockSymbol, AlertPrice,
TeamName, UpOrDown) VALUES (" & AccountID & ",'" & SelectStockComboBox.SelectedItem &
"','" & AlertPriceBox.Text & "','" & TeamName & "','" & UpOrDown & "')"

The command text, or SQL statement, is given a value. In this sub-routine, an insert statement is used to

insert the alert into the database. All of the attributes of the table are given a value.

cmd.ExecuteNonQuery()
ConnectionDb.Close()

The insert is executed, and the connection to the database is closed.

MsgBox("A new alert for " & NameBox.Text & " at " & AlertPriceBox.Text & " has been

set.")

The user is informed that their alert creation was successful.

Sub CreateNewAlert(ByVal UpOrDown As String)

 If ValidateAlertPrice(AlertPriceBox.Text) Then

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = "INSERT INTO tblAlerts (AccountID, StockSymbol,
AlertPrice, TeamName, UpOrDown) VALUES (" & AccountID & ",'" &
SelectStockComboBox.SelectedItem & "','" & AlertPriceBox.Text & "','" & TeamName &
"','" & UpOrDown & "')"
 cmd.ExecuteNonQuery()
 ConnectionDb.Close()

 MsgBox("A new alert for " & NameBox.Text & " at " & AlertPriceBox.Text &
" has been set.")
 Else
 MsgBox("Please enter a valid alert price.")
 End If

 End Sub

INVESTU – J—H----- 227

ValidateAlertPrice – MainForm – Investu Development 3

The validation for the alert price consists of two regular expressions that check for the number of numbers

and the number of non-numeric characters. If the number of numbers is 0 or 1 then the validation fails. If

the number of non-numeric characters is greater than 0 then the check also fails.

OpenToolStripButton_Click – MainForm – Investu Development 3

The team system has been implemented into the simulation, however there is still no way for users to join

teams, other than being written into the database manually. This sub-routine gives the users the ability to

join a team easily and within the simulation. The sub-routine is called on click of a button in the

‘OpenToolStrip’ control.

Dim TeamCode As String
TeamCode = InputBox("Please input the 5 character Team Code here, issued to you by your
teacher", "Join Team", "")

 Function ValidateAlertPrice(ByVal Price As String)

 Dim Numbers As New System.Text.RegularExpressions.Regex("[0-9]")
 Dim NotNumbers As New System.Text.RegularExpressions.Regex("[^0-9]")

 If Numbers.Matches(Price).Count < 2 Then Return False
 If NotNumbers.Matches(Price).Count > 0 Then Return False

 Return True
 End Function

Private Sub OpenToolStripButton_Click(sender As System.Object, e As
System.EventArgs) Handles OpenToolStripButton.Click

 Dim TeamCode As String
 TeamCode = InputBox("Please input the 5 character Team Code here, issued to
you by your teacher", "Join Team", "")

 If ValidTeamCode(TeamCode) Then
 If UserAlreadyInTeam(AccountID) Then
 DeleteUserFromTeam(AccountID)
 AddNewPlayerToTeam(AccountID, TeamCode)
 Else
 AddNewPlayerToTeam(AccountID, TeamCode)
 End If
 LoginForm.Show()
 Me.Close()
 Else
 MsgBox("The team code you entered was not valid.")
 End If
 End Sub

INVESTU – J—H----- 228

The variable ‘TeamCode’ is defined, and given a value from an input box shown to the user.

If ValidTeamCode(TeamCode) Then
 …
Else
 MsgBox("The team code you entered was not valid.")
End If

A conditional is used that ensures the team code entered by the user is valid, by using the function

‘ValidTeamCode’. If the code isn’t valid, then the user is shown an error message.

If UserAlreadyInTeam(AccountID) Then
 DeleteUserFromTeam(AccountID)
 AddNewPlayerToTeam(AccountID, TeamCode)
Else
 AddNewPlayerToTeam(AccountID, TeamCode)
End If

Inside the first validation conditional is another conditional, that this time checks whether or not the user is

already in a team. If they are found to already be in a team, then an extra sub-routine is called, that

removes them from their current team first, then adds them to their desired team. If they are not in a team,

then there is no need to remove them first, so they are added straight to their desired team.

LoginForm.Show()
Me.Close()

After joining a new team, the user is signed out, so that the program can be reloaded in either team mode

or personal account mode.

INVESTU – J—H----- 229

DeleteUserFromTeam – MainForm – Investu Development 3

DELETE * FROM tblTeamUsers WHERE AccountID=" & AccountID & "

This sub-routine opens a connection to the database, then executes a Delete SQL statement, which

removes the connection between the user and the team, therefore removing the user from being a

member of the team.

Sub DeleteUserFromTeam(ByVal AccountID As Integer)

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()
 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

 cmd.CommandText = "DELETE * FROM tblTeamUsers WHERE AccountID=" & AccountID
& ""
 cmd.ExecuteNonQuery()
 MsgBox("You have been removed from your current team.")
 ConnectionDb.Close()
End Sub

INVESTU – J—H----- 230

UserAlreadyInteam – MainForm – Investu Development 3

Another of the validation checks that need to be done when adding a user to a team is a check to ensure

the user is not already in a team.

"SELECT AccountID FROM tblTeamUsers WHERE AccountID=" & AccountID & ""

This is done through the standard database connection, and then setting the command text to the above

SQL statement. This will return every connection between the account and a team. This will always return

either 1 or 0 replies – 1 if the user is in a team, or 0 if the user is not in a team.

For Each Record In SQLReply
 AlreadyInTeam = True
Next

Hence, if a record exists, it can be assumed that the user is already in a team, and true can be returned.

Function UserAlreadyInTeam(ByVal AccountID As Integer)

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand
 Dim SQLReply As OleDbDataReader

 cmd = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT AccountID FROM tblTeamUsers WHERE AccountID=" &
AccountID & ""
 SQLReply = cmd.ExecuteReader

 For Each Record In SQLReply
 Return True
 Next
 ConnectionDb.Close()

 Return False
 End Function

INVESTU – J—H----- 231

ValidTeamCode – MainForm – Investu Development 3

‘ValidTeamCode’ is another function used to validate the users attempt at joining a team. The function will

only return true once two other functions also return true.

If CheckTeamCodeExists(TeamCode) Then
 …
Else
 Msgbox("The Team Code you entered does not exist.")
End If

The first conditional checks that the actual team code exists. If it does not, then a relevant error message

is returned.

If EmptySpaceInTeam(TeamCode) Then
 Return True
Else
 ErrorMsg = "The team you are trying to join is already full."
End If

Inside the first conditional, the next conditional checks that the team the user is trying to join is not full. If

there is found to be space in the team then the function returns true.

Return False

If the code has not returned true already, then it means the validation failed and false is returned.

Function ValidTeamCode(ByVal TeamCode As String)

 If CheckTeamCodeExists(TeamCode) Then
 If EmptySpaceInTeam(TeamCode) Then
 Return True
 Else
 ErrorMsg = "The team you are trying to join is already full."
 End If
 Else
 ErrorMsg = "The Team Code you entered does not exist."
 End If

 Return False
 End Function

INVESTU – J—H----- 232

CheckTeamCodeExists – MainForm – Investu Development 3

‘CheckTeamCodeExists’ queries the database to see if the team code that the user is trying to use to join

a team is valid. This is done via a Select query that returns all of the possible team codes.

SELECT TeamCode FROM tblTeams

Once there is a list of all possible team codes, they can be iterated through, and compared to the users

team code.

For Each Record In SQLReply
 If Record.item("TeamCode") = TeamCode Then Return True
Next

If one of the replies is equal to the user team code, then the team code has been proven to exist and the

function can return true.

 Function CheckTeamCodeExists(ByVal TeamCode As String)

 If TeamCode = "" Then
 Return False
 End If

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand
 Dim SQLReply As OleDbDataReader

 cmd = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT TeamCode FROM tblTeams"
 SQLReply = cmd.ExecuteReader

 For Each Record In SQLReply
 If Record.item("TeamCode") = TeamCode Then Return True
 Next
 ConnectionDb.Close()
 Return False

 End Function

INVESTU – J—H----- 233

EmptySpaceInTeam – MainForm – Investu Development 3

Dim UsersAlreadyInTeam As Integer = 0

First, the variable ‘UsersAlreadyInTeam’ is declared. ‘UsersAlreadyInTeam’ is a count of how many

accounts are currently in the team. If this is less than 4, then there will be space in the team for the new

user to join. If it is 4, then the team is full and the user can’t join.

cmd.CommandText = "SELECT * FROM tblTeamUsers WHERE tblTeamUsers.TeamID=tblTeams.TeamID
AND tblTeams.TeamCode='" & TeamCode & "'"

The simulation has the value of ‘TeamCode’, however in order to query the link table, the primary key

identifying the team is needed. This is ‘TeamID’.

The SQL statement needs to use two clauses in the ‘Where’ section of the query. The first ensures that

the data retrieved is that which has matching ‘TeamID’ values, and the second ensures that only the data

of teams with a matching team code is retrieved.

This use of cross-table parametrized SQL reduces the need for two SQL statements, making the process

of querying the database more efficient.

For Each Record In SQLReply
 UsersAlreadyInTeam += 1
Next

 Function EmptySpaceInTeam(ByVal TeamCode As String)

 Dim UsersAlreadyInTeam As Integer = 0

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand
 Dim SQLReply As OleDbDataReader

 cmd = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT * FROM tblTeamUsers WHERE
tblTeamUsers.TeamID=tblTeams.TeamID AND tblTeams.TeamCode='" & TeamCode & "'"

 SQLReply = cmd.ExecuteReader

 For Each Record In SQLReply
 UsersAlreadyInTeam += 1
 Next

 If UsersAlreadyInTeam < 4 Then
 Return True
 End If

 ConnectionDb.Close()

 Return False
 End Function

INVESTU – J—H----- 234

Every record that is returned from the query represents a single line returned from ‘tblTeamUsers’.

‘tblTeamUsers’ is a link table and so each line represents the connection of a user to a team. Therefore

by counting the number of replies, we can work out how many users are in the team.

‘UsersAlreadyInTeam’ is incremented by 1 each time.

If UsersAlreadyInTeam < 4 Then
 Return True
End If

Return False

If the number of users in the team is less than 4, then the function returns true. If the function has not

exited by the time it gets to the end, then it means that there is no space in the team, and so false is

returned.

INVESTU – J—H----- 235

AddNewPlayToTeam – MainForm – Investu Development 3

After all of the validation checks are passed, the user is finally allowed to join the team. This is done via

the ‘AddNewPlayerToTeam’ sub-routine, that takes two arguments: ‘AccountID’ and ‘TeamCode’.

cmd.CommandText = "SELECT TeamID, TeamName FROM tblTeams WHERE TeamCode='" & TeamCode &

"'"

The value of ‘TeamCode’ is used in the first SQL statement of the sub-routine, which retrieves the

‘TeamID’ value from the database, as well as the name of the team.

For Each Record In SQLReply
 TeamID = Record.item("TeamID")
 TeamName = Record.item("TeamName")
Next

The results of the query gives the simulation a value for ‘TeamID’ and ‘TeamName’

SQLReply.Close()

Sub AddNewPlayerToTeam(ByVal AccountID As Integer, ByVal TeamCode As String)

 Dim TeamID As Integer
 Dim TeamName As String = ""

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand
 Dim SQLReply As OleDbDataReader

 cmd = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT TeamID, TeamName FROM tblTeams WHERE TeamCode='" &
TeamCode & "'"

 SQLReply = cmd.ExecuteReader

 For Each Record In SQLReply
 TeamID = Record.item("TeamID")
 TeamName = Record.item("TeamName")
 Next

 SQLReply.Close()

 cmd.CommandText = "INSERT INTO tblTeamUsers (AccountID, TeamID) VALUES (" &
AccountID & ",'" & TeamID & "')"

 cmd.ExecuteNonQuery()
 MsgBox("You have joined " & TeamName & "")
 ConnectionDb.Close(
 End Sub

INVESTU – J—H----- 236

 cmd.CommandText = "INSERT INTO tblTeamUsers (AccountID, TeamID) VALUES (" &
AccountID & ",'" & TeamID & "')"

The reply is closed, then the command text is set to a new SQL statement. This time, we are using the

value we have retrieved to insert a new link into the link table ‘tblTeamUsers’. The values passed into

‘AccountID’ and ‘TeamID’ are the values of the account ID which was passed as an argument, and

‘TeamID’ which was retrieved in the previous SQL statement.

cmd.ExecuteNonQuery()
ConnectionDb.Close()

The SQL is executed, and the connection to the database is closed.

MsgBox("You have joined " & TeamName & "")

The user is informed that they have successfully joined the team.

INVESTU – J—H----- 237

BuyForm - Investu – Development 3

Development 3 adds only a single feature to ‘BuyForm’. That is, the ability for users to add a description

stating any relevant information relating to the buy that they are about to execute. This feature will be

useful for keeping all team members up to date on the reasons for making a trade, as well as reminding

the buyer of the buy and sell conditions of their position.

For the first version of ‘BuyForm’ code, refer to page 74.

Global Variables – BuyForm – Investu Development 3

The full code for this section can be found on page 74.

BuyForm_Load – BuyForm – Investu Development 3

 TeamMode = MainForm.TeamMode
 TeamName = MainForm.TeamName

This code is the same as in Development 1, with the addition of the 2 lines of code above. This

information is important because it will be needed when adding new positions to the database.

The full code for this sub-routine can be found on page 75.

QuantitySlider_Scroll– BuyForm – Investu Development 3

The full code for this sub-routine can be found on page 76.

Public Class BuyForm

 Private Sub BuyForm_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Private Sub QuantitySlider_Scroll(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles QuantitySlider.Scroll

INVESTU – J—H----- 238

BuyButton_Click – BuyForm – Investu Development 3

If NotesBox.TextLength > 255 Then
 MsgBox("Your note is too long.")
Else

The longest value for a string within the database is 255 characters. Therefore, this conditional is

necessary to avoid the Insert statement from crashing the program.

For L = 0 To MainForm.Symbols.Count - 1
 If MainForm.Symbols(L) = MainForm.SelectStockComboBox.SelectedItem Then

Within the condition is a For-Loop and another conditional. These are used to find the correct stock

symbol that the user is about to buy. Once the value of this symbol is determined, then it can be used to

update ‘OpenPositions’ and the database.

If MainForm.Balance > (Quantity * StockPrice) Then

The final nested-conditional checks that the use has enough money to make the trade. If this final

conditional returns true then the following code executes:

 Private Sub BuyButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles BuyButton.Click

 If NotesBox.TextLength > 255 Then
 MsgBox("Your note is too long.")
 Else
 For L = 0 To MainForm.Symbols.Count - 1

 If MainForm.Symbols(L) = MainForm.SelectStockComboBox.SelectedItem Then

 If MainForm.Balance > (Quantity * StockPrice) Then
 MainForm.OpenPositions.Add(New StockAttributes With
{.StockSymbol = MainForm.Symbols(L), .StockValue = StockPrice, .StockQuantity =
Quantity, .OpenPositionID = MainForm.AccountID & DateTime.Now, .BuyDate =
DateTime.Now, .StockName = Stockname})
 StoreNewPosition(MainForm.AccountID, Stockname, Stocksymbol,
Quantity, StockPrice, DateTime.Now, TeamName, NotesBox.Text)
 UpdateBalance(MainForm.AccountID)
 MainForm.UpdatePortfolio()

 Me.Close()
 Else
 MsgBox("You don't have enough money to buy that many " &
Stockname & " stocks.")
 End If
 End If
 Next
 MainForm.FetchTradeHistory()
 End If
 End Sub

INVESTU – J—H----- 239

MainForm.OpenPositions.Add(New StockAttributes With {.StockSymbol =
MainForm.Symbols(L), .StockValue = StockPrice, .StockQuantity = Quantity, .OpenPositionID
= MainForm.AccountID & DateTime.Now, .BuyDate = DateTime.Now, .StockName = Stockname})

This code is responsible for updating the ‘OpenPositions’ list. The attributes of the list are set to the

relevant values for the trade, such as quantity and price.

StoreNewPosition(MainForm.AccountID, Stockname, Stocksymbol, Quantity, StockPrice,
DateTime.Now, TeamName, NotesBox.Text)

Then, the new position is stored into the database using ‘StoreNewPosition’. This sub-routine takes 8

arguments to create entries into the database in the relevant tables, like ‘tblOpenPositions’ and

‘tblTradeHistory’.

UpdateBalance(MainForm.AccountID)
MainForm.UpdatePortfolio()

The sub-routine ‘UpdateBalance’ is called to store the new balance in the database, and ‘UpdatePortfolio’

is called in the main form in order to update the visual display with the new position.

MainForm.FetchTradeHistory()

‘FetchTradeHistory’ is called to update the trade-history display with the new position added.

INVESTU – J—H----- 240

UpdateBalance – BuyForm – Investu Development 3

MainForm.Balance = MainForm.Balance - ((Quantity * StockPrice))
MainForm.BalanceBox.Text = "£" & Math.Round((MainForm.Balance / 100), 2)

First, the balance is set within the simulation. As this is a buy trade, the price is taken away from the

current balance. The balance textbox is then formatted to show the new change.

Dim CommandString As String
 If TeamMode Then
 CommandString = "UPDATE tblTeams SET tblTeams.Balance=" & MainForm.Balance &
" WHERE tblTeams.TeamName='" & TeamName & "';"

 Else
 CommandString = "UPDATE tblUserInfo SET tblUserInfo.Balance=" &
MainForm.Balance & " WHERE (((tblUserInfo.AccountID)=" & AccountID & "));"
 End If

The command string is set to one of two values. If the user is in ‘TeamMode’ then the balance is updated

in the ‘tblTeams’ table. If the user is not in ‘TeamMode’, then the table ‘tblUserInfo’ is updated.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()
Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
cmd.CommandText = CommandString
cmd.ExecuteNonQuery()
ConnectionDb.Close()

The connection to the database is initialised, and the SQL command is executed, updating the balance

within the database.

Sub UpdateBalance(ByVal AccountID As Integer)

 MainForm.Balance = MainForm.Balance - ((Quantity * StockPrice))
 MainForm.BalanceBox.Text = "£" & Math.Round((MainForm.Balance / 100), 2)

 Dim CommandString As String
 If TeamMode Then
 CommandString = "UPDATE tblTeams SET tblTeams.Balance=" &
MainForm.Balance & " WHERE tblTeams.TeamName='" & TeamName & "';"

 Else
 CommandString = "UPDATE tblUserInfo SET tblUserInfo.Balance=" &
MainForm.Balance & " WHERE (((tblUserInfo.AccountID)=" & AccountID & "));"
 End If

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

 cmd.CommandText = CommandString

 cmd.ExecuteNonQuery()
 ConnectionDb.Close()
 End Sub

INVESTU – J—H----- 241

StoreNewPosition – BuyForm – Investu Development 3

The final sub-routine within ‘BuyForm’ is ‘StoreNewPosition’. This is responsible for entering the

information of a new trade into two tables, ‘tblOpenPositions’ and ‘tblTradeHistory’.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

The connection to the database is opened.

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

cmd.CommandText = "INSERT INTO TblOpenPositions (AccountID, StockName, StockSymbol,
StockQuantity, BuyPrice, TradeDate, OpenPositionID, TeamName) VALUES ('" & ID & "','" &
StockName & "','" & StockSymbol & "','" & StockQuantity & "','" & StockValue & "','" &
BuyDate & "','" & ID & BuyDate & "','" & TeamName & "')"

The first SQL command is set. This command adds a new entry to ‘tblOpenPositions’. The table has 8

attributes, and therefore the SQL command takes 8 values, taken from the various variables in buy form.

cmd.ExecuteNonQuery()

The Insert command is executed.

 Sub StoreNewPosition(ByVal ID As Integer, ByVal StockName As String, ByVal
StockSymbol As String, ByVal StockQuantity As Integer, ByVal StockValue As Decimal,
ByVal BuyDate As Date, ByVal TeamName As String, ByVal Notes As String)

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = "INSERT INTO TblOpenPositions (AccountID, StockName,
StockSymbol, StockQuantity, BuyPrice, TradeDate, OpenPositionID, TeamName) VALUES ('"
& ID & "','" & StockName & "','" & StockSymbol & "','" & StockQuantity & "','" &
StockValue & "','" & BuyDate & "','" & ID & BuyDate & "','" & TeamName & "')"

 cmd.ExecuteNonQuery()

 cmd.CommandText = "INSERT INTO TblTradeHistory (AccountID, StockSymbol,
StockQuantity, BuyOrSell, TradePrice, TradeDate, TeamName, Notes) VALUES ('" & ID &
"','" & StockSymbol & "','" & StockQuantity & "','Buy','" & StockValue & "','" &
BuyDate & "','" & TeamName & "','" & Notes & "')"

 cmd.ExecuteNonQuery()
 ConnectionDb.Close()
 End Sub
End Class

INVESTU – J—H----- 242

cmd.CommandText = "INSERT INTO TblTradeHistory (AccountID, StockSymbol, StockQuantity,
BuyOrSell, TradePrice, TradeDate, TeamName, Notes) VALUES ('" & ID & "','" & StockSymbol
& "','" & StockQuantity & "','Buy','" & StockValue & "','" & BuyDate & "','" & TeamName &
"','" & Notes & "')"

Next, a new SQL command is set. This is an Insert statement that makes a new entry in ‘tblTradeHistory’.

This takes much the same values as the previous SQL command, but enters the information into a

different table.

cmd.ExecuteNonQuery()
ConnectionDb.Close()

The command is executed and the connection closed.

INVESTU – J—H----- 243

Investu Server Program – Version 2 – Development 3

The second version of Investu Server Program will peform the same function as in the previous version,

but with an integrated alerts-sending system added. Users of the simulation will be able to set price alerts,

and receive notifications telling them when the price is reached. In order for this to work when the user is

offline, the server program will be constantly running and checking all of the currently active alerts, and

then sending an email to the user, when their alert price is reached.

Namespaces/Imports – Investu Server Program – Investu Development 3

The imports for version 2 of Investu Server Program are the same as in the first version in Development 2,

with the addition of the ‘System.Net.Mail’ import. This import will allow for the sending of mail from the

program.

Global Variables – Investu Server Program – Investu Development 3

The variables for the connection to the database are declared, as well as the ‘Symbols’ list which will be

read in from a .CSV file containing a list of all FTSE100 stock symbols. A variable for counting the loops

of the timer within the program is also declared.

Imports System.Net.Mail
Imports System.Net
Imports System.IO
Imports System.Xml
Imports System.Data.OleDb

Public Class InvestuServerProgram

 Dim DBPath As String = "C:\Users\Joe\Documents\visual studio 2010\Investu
Writeup\Development 3\StockInfoDB.mdb"
 Public AccessDatabaseConnection As String = "Provider =
Microsoft.Jet.OLEDB.4.0;Data Source =" & DBPath

 Dim LoopCount As Integer = 0
 Public Symbols As New List(Of String)

INVESTU – J—H----- 244

InvestuServerProgram_Load – Investu Server Program – Investu Development 3

For this version, all that happens on load of the program is formatting. This formatting of the display lets

the user know the current state of the program.

InvestuServerProgram_Load – Investu Server Program – Investu Development 3

The second version of the server program allows the user to select their own file paths for the database

and stock symbol CSV file. This means that the program can be transported to other systems easily.

Dim FilePath As String
Dim FileDialog As New OpenFileDialog

Two varaibles are declared: a string for holding the resulting file path, and an ‘OpenFileDialog’ to allow

the user to browse their system for files.

If FileDialog.ShowDialog() = Windows.Forms.DialogResult.OK Then
 FilePath = FileDialog.FileName
End If

This conditional opens a new file browser, and then waits for the user to press the ‘OK’ button. If they do,

then the value of ‘FilePath’ is set to the currently selected path in the file browser.

Return FilePath

The value of the variable ‘FilePath’ is returned. This function can now be used anywhere that a file path is

needed.

 Private Sub InvestuServerProgram_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 RunningStoppedLabel.Text = "STOPPED"
 RunningStoppedLabel.ForeColor = Color.Red
End Sub

Function GetFilePath()

 Dim FilePath As String
 Dim FileDialog As New OpenFileDialog
 FileDialog.InitialDirectory = Application.StartupPath
 If FileDialog.ShowDialog() = Windows.Forms.DialogResult.OK Then
 FilePath = FileDialog.FileName
 End If
 Return FilePath

End Function

INVESTU – J—H----- 245

StartButton_Click – Investu Server Program – Investu Development 3

PopulateSymbolArray(GetFilePath())

When the user opts to run the program, they must first select the list of stock symbols they want to us.

‘PopulateSymbolArray’ is a sub-routine that takes a single argument: a file path for a .CSV file containing

stock symbols. This file is then processed, and all of the stock symbols are extracted into a list. Then, the

program searches for the latest stock information regarding these symbols. It is therefore vital that this list

is up to date and accurate, and so the ability to select a new list every time the program is run is an

important feature.

Timer1.Start()
Timer2.Start()

Two timers are started that control different aspects of the program. These timers will be explained later

on.

RunningStoppedLabel.Text = "RUNNING"
RunningStoppedLabel.ForeColor = Color.Green

The visual display is updated to inform the user that the program is running

 Private Sub StartButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles StartButton.Click
 PopulateSymbolArray(GetFilePath())
 Timer1.Start()
 Timer2.Start()
 RunningStoppedLabel.Text = "RUNNING"
 RunningStoppedLabel.ForeColor = Color.Green
End Sub

INVESTU – J—H----- 246

FillDB_Load – Investu Server Program – Investu Development 3

One of the new features in Development 3 of the main program is a display showing the data of all of the

stocks in the program in a single tab, so that they can easily be viewed. This table is effectively a list of all

stock symbols, and their latest price and change values. However, because the stock symbols list can

change, there needs to be a way of updating this table. ‘FillDB’ is responsible for wiping the information

from this table and then re-writing it, with the update list of stock symbols, and their respective price

information.

Because this is an intensive process, it will only be run on the click of a button, and not automatically.

Once it has been run once, the prices for each stock can be kept up to date by using an ‘Update’ SQL

command every time new price data is retrieved for the table ‘tblStockPriceHistory’

PopulateSymbolArray(GetFilePath())

The file pathway of the symbol list is retrieved, and the list ‘Symbols’ is updated.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

The database is connected to, and a new command is created.

cmd.CommandText = "DELETE * FROM tblStockDetails"
cmd.ExecuteNonQuery()

This is responsible for first wiping the table before new stock details are written in. It is immediately

executed.

Sub FillDB()

 PopulateSymbolArray(GetFilePath())

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

 cmd.CommandText = "DELETE * FROM tblStockDetails"
 cmd.ExecuteNonQuery()

 For L = 0 To 99
 cmd.CommandText = "INSERT INTO tblStockDetails (StockSymbol, StockName,
Price, Change) VALUES ('" & Symbols(L) & "','" & GetStockName(Symbols(L)) & "','" &
GetStockPrice(Symbols(L)) & "','" & GetStockChange(Symbols(L)) & "')"
 cmd.ExecuteNonQuery()
 Next
 ConnectionDb.Close()
 End Sub

INVESTU – J—H----- 247

 For L = 0 To 99
 cmd.CommandText = "INSERT INTO tblStockDetails (StockSymbol, StockName, Price,
Change) VALUES ('" & Symbols(L) & "','" & GetStockName(Symbols(L)) & "','" &
GetStockPrice(Symbols(L)) & "','" & GetStockChange(Symbols(L)) & "')"
 cmd.ExecuteNonQuery()
 Next

Then, a For-Loop is initiated, that loops 100 times, because there are 100 stock symbols in the FTSE100.

For each loop of the For-Loop, a new line is written to the table. The values inserted are the symbol, and

then the name, price and change values, retrieved from the ‘GetStock’ functions.

FillDBButton_Click – Investu Server Program – Investu Development 3

There are a total of 300 internet queries made every time the database if filled: 3 for each of the 100 stock

symbols. This is obviously highly costly in terms of computer resources and so can cause the program to

slow down and stop the program from doing its main function: fetching stock price data and writing it to

the database.

Therefore, when ‘FillDB’ is called, it is done via a background worker. A background worker is a VB

control that performs tasks in the background – it allows the program to run an operation on a seperate,

dedicated thread, which stops the user interface from appearing to stop responding.

BackgroundWorker_DoWork – Investu Server Program – Investu Development 3

When the background worker is called, the ‘FillDB’ sub-routine is called, and the process of filling the

‘tblStockDetails’ table with stock infromation begins.

Private Sub FillDBButton_Click(sender As System.Object, e As System.EventArgs) Handles
FillDBButton.Click
 If Not BackgroundWorker.IsBusy Then
 BackgroundWorker.RunWorkerAsync()
 End If
 End Sub

Private Sub BackgroundWorker_DoWork(sender As System.Object, e As
System.ComponentModel.DoWorkEventArgs) Handles BackgroundWorker.DoWork
 FillDB()
 End Sub

INVESTU – J—H----- 248

PopulateSymbolArray – Investu Server Program – Investu Development 3

This sub-routine is the same as found in Development 2 on page 135.

Timer1_Tick – Investu Server Program – Investu Development 3

This sub-routine is the same as found in Development 2 on page 109.

FetchLatestStockInfo – Investu Server Program – Investu Development 3

This sub-routine is the same as found in Development 2 on page 110.

FormatString – Investu Server Program – Investu Development 3

This sub-routine is the same as found in Development 2 on page 112.

Public Sub PopulateSymbolArray(ByVal FilePath As String)

 Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Timer1.Tick

Sub FetchLatestStockInfo()

Function FormatString(ByVal A As Integer, B As String, C As String, D As String)

INVESTU – J—H----- 249

UpdateDatabase – Investu Server Program – Investu Development 3

This sub-routine is the same as the first version of Investu Server Program, with the addition of this code:

cmd.CommandText = "UPDATE tblStockDetails SET Price=" & StockPrice & ", Change=" &
StockChange & " WHERE StockSymbol='" & StockSymbol & "'"
 cmd.ExecuteNonQuery()

The sub-routine now not only adds a new entry to ‘tblStockPriceHistory’, but also updates the value of the

current price within ‘tblStockDetails’. ‘tblStockDetails’ is responsible for populating a display with the

information of all stocks in the FTSE100, and so by updating every time a new price is fetched, we have

the most chance of keeping the data within that table accurate.

 Sub UpdateDatabase(ByVal StockSymbol As String, ByVal StockPrice As Decimal, ByVal
StockChange As Decimal)

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

 cmd.CommandText = "INSERT INTO tblStockPriceHistory (StockSymbol, StockPrice,
FetchTime, FetchDate) VALUES ('" & StockSymbol & "','" & StockPrice & "','" &
TimeOfDay & "','" & Date.Now & "')"
 cmd.ExecuteNonQuery()

cmd.CommandText = "UPDATE tblStockDetails SET Price=" & StockPrice & ",
Change=" & StockChange & " WHERE StockSymbol='" & StockSymbol & "'"
 cmd.ExecuteNonQuery()

 ConnectionDb.Close()

 End Sub

INVESTU – J—H----- 250

SplitStockInfo – Investu Server Program – Investu Development 3

This sub-routine is the same as found in the Testing section of Development 1 on page 96.

CheckAlerts – Investu Server Program – Investu Development 3

The database will contain a list of alerts that have been set by users. These alerts need to activate and

the user needs to be notified, when the price they specified is reached. This means that the alert prices

and the actual prices of stocks need to be constantly checked to see if the alert price has been reached.

Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

In order to do this, a new connection is initiated, and an SQL command is created.

SELECT * FROM tblAlerts

Function SplitStockInfo(ByVal StringToSplit As String, ByVal DetailsToExtract As
String)

 Sub CheckAlerts()
 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

 cmd.CommandText = "SELECT * FROM tblAlerts"

 Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

 For Each Record In SQLReply

 If Record.item("UpOrDown") = "UP" And
GetStockPrice(Record.item("StockSymbol")) > Record.item("AlertPrice") Then

 SendAlert(Record.item("ID"), Record.item("AccountID"),
Record.item("StockSymbol"), Record.item("AlertPrice"), Record.item("TeamName"))

 ElseIf Record.item("UpOrDown") = "DOWN" And
GetStockPrice(Record.item("StockSymbol")) < Record.item("AlertPrice") Then

 SendAlert(Record.item("ID"), Record.item("AccountID"),
Record.item("StockSymbol"), Record.item("AlertPrice"), Record.item("TeamName"))
 End If
 FetchAlerts()
 Next
 ConnectionDb.Close()
 End Sub

INVESTU – J—H----- 251

The SQL command selects every single alerts from the table.

For Each Record In SQLReply

Next

These alerts are then looped through.

 If Record.item("UpOrDown") = "UP" And
GetStockPrice(Record.item("StockSymbol")) > Record.item("AlertPrice") Then

 SendAlert(Record.item("ID"), Record.item("AccountID"),
Record.item("StockSymbol"), Record.item("AlertPrice"), Record.item("TeamName"))

Inside the For-Each loop, a conditional checks the status of the alerts.

Alerts can be ‘Up’ alerts, or ‘Down’ alerts. ‘Up’ are alerts such that the stock price is below the alert price,

and the user wants a notification when the current price goes OVER their alert price. ‘Down’ alerts are

alerts such that the stock price is above the alert price, and the user wants a notification when the current

price goes BELOW their alert price. This is important as it determines which logical comparison is made.

If the alert is an ‘Up’ alert, then...

GetStockPrice(Record.item("StockSymbol")) > Record.item("AlertPrice")

... checks whether or not the current price, retrieved with ‘GetStockPrice’, is greater than the alert price. If

this is the case, then the sub-routine ‘SendAlert’ is called, and passed 5 arguments.

ElseIf Record.item("UpOrDown") = "DOWN" And GetStockPrice(Record.item("StockSymbol")) <
Record.item("AlertPrice") Then

 SendAlert(Record.item("ID"), Record.item("AccountID"),
Record.item("StockSymbol"), Record.item("AlertPrice"), Record.item("TeamName"))

However, if the alert is ‘Down’ alert then the comparison...

GetStockPrice(Record.item("StockSymbol")) < Record.item("AlertPrice") Then

... checks whether or not the current price is below the alert price. If this is the case, then an alert is sent

to the user, using the same ‘SendAlert’ sub-routine as before.

FetchAlerts()

Once the alert is called, it will be deleted from the list, so ‘FetchAlerts’ is called to update the visual

display of currently active alerts.

INVESTU – J—H----- 252

SendAlert – Investu Server Program – Investu Development 3

‘SendAlert’ sends the notification to the user telling them that their alert has been reached. The sub-

routine makes use of the ‘System.Net.Mail’ import to send an email to the user.

Dim Mail As New MailMessage()

A new instance of the ‘MailMessage’ class is initiated.

Mail.From = New MailAddress("InvestuAlerts@outlook.com")
Mail.[To].Add(GetEmailUsingID(AccountID))
Mail.Subject = "Investu Alert for " & GetStockName(StockSymbol) & ""
Mail.Body = "This is an alert for " & GetStockName(StockSymbol) & ". The stock has
reached the price of £" & AlertPrice / 100 & " has been reached. Login to your Investu
account to take further action."

4 values are given to the new mail. The sender, receiver, subject, and body. The ‘To’ value is the result of

a function called ‘GetEmailUsingID’ which uses the ID of the account which wrote the alert, and then uses

it to find the email of that account.

 Dim SMTP As New SmtpClient()
 SMTP.Host = "smtp.live.com"
 SMTP.Credentials = New NetworkCredential("investualerts@outlook.com",
"Alerts@Investu")
 SMTP.EnableSsl = True

Sub SendAlert(ByVal AlertID As Integer, ByVal AccountID As Integer, ByVal StockSymbol
As String, ByVal AlertPrice As Integer, ByVal TeamName As String)

 Dim Mail As New MailMessage()

 Mail.From = New MailAddress("InvestuAlerts@outlook.com")
 Mail.[To].Add(GetEmailUsingID(AccountID))

 Mail.Subject = "Investu Alert"
 Mail.Body = "This is an alert for " & GetStockName(StockSymbol) & ". The stock
has reached the price of £" & AlertPrice / 100 & " has been reached. Login to your
Investu account to take further action."

 Dim SMTP As New SmtpClient()
 SMTP.Host = "smtp.live.com"
 SMTP.Credentials = New NetworkCredential("investualerts@outlook.com",
"Alerts@Investu")
 SMTP.EnableSsl = True

 Try
 SMTP.Send(Mail)
 Catch exc As Exception
 StoreCrashInfo(exc.ToString(), DateTime.Now)
 End Try
 DeleteAlert(AlertID)
 End Sub

INVESTU – J—H----- 253

Once the message itself is composed, the sending details are set. ‘SMTP’ stands for ‘Simple Mail

Transfer Protocol’, and is a set of rules for sending mail. A new SMTP client is initiated, through which the

mail will be sent. The client is given a host, which is ‘smtp.live.com’ in this case, as the Investu email was

made with Outlook, which uses the Live servers.

The credentials of the sender are then set. The ‘NetworkCredential’ class takes two arguments: an email

and password. The email and password are for Investu email account.

SMTP.EnableSsl = True

SSL is enabled to ensure that the communication is encrypted.

 Try
 SMTP.Send(Mail)

 DeleteAlert(AlertID)
 Catch exc As Exception
 StoreCrashInfo(exc.ToString(), DateTime.Now)
 End Try

Once the mail is composed and the sending information is set, the sub-routine tries to send the mail. This

is wrapped in a Try-Catch as it can be prone to errors. If the send is successful, then the user will receive

an email notification with information regarding their alert.

If the send is not successful, the exeception that is thrown is stored in the database and the program

continues.

The alert is then deleted using the sub-routine ‘DeleteAlert’.

INVESTU – J—H----- 254

DeleteAlert – Investu Server Program – Investu Development 3

DELETE * FROM tblAlerts WHERE ID=" & AlertID & "

The sub-routine connects to the database and uses the above SQL command to remove all trace of the

alert.

FetchAlerts – Investu Server Program – Investu Development 3

Sub DeleteAlert(ByVal AlertID As Integer)

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()
 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = "DELETE * FROM tblAlerts WHERE ID=" & AlertID & ""
 cmd.ExecuteNonQuery()
 ConnectionDb.Close()
 End Sub

Sub FetchAlerts()

 Dim MyConnection As OleDbConnection
 Dim Adapter As OleDbDataAdapter
 Dim DataSet As DataSet
 Dim Tables As DataTableCollection
 Dim Source As New BindingSource

 MyConnection = New OleDbConnection
 MyConnection.ConnectionString = AccessDatabaseConnection
 DataSet = New DataSet
 Tables = DataSet.Tables
 Adapter = New OleDbDataAdapter("SELECT * FROM tblAlerts", MyConnection)
 Adapter.Fill(DataSet, "tblAlerts")
 Dim View As New DataView(Tables(0))
 Source.DataSource = View
 AlertsGrid.DataSource = View

 AlertsGrid.Columns(0).Width = 60
 AlertsGrid.Columns(1).Width = 60
 AlertsGrid.Columns(2).Width = 90
 AlertsGrid.Columns(3).Width = 90
 AlertsGrid.Columns(4).Width = 60
 AlertsGrid.Columns(5).Width = 90

 End Sub

INVESTU – J—H----- 255

‘FetchAlerts’ is a purely cosmetic sub-routine, that creates a display with all alerts in the user interface for

the server program. The sub-routine is not necessary for the function of the program, but can be useful

for seeing which alerts are active, for debugging and testing purposes.

Adapter = New OleDbDataAdapter("SELECT * FROM tblAlerts", MyConnection)
Adapter.Fill(DataSet, "tblAlerts")

An instance of the ‘OleDbDataAdapter’ class is initiated, with a Select-all query passed as an argument.

The data set is then filled with matching data from ‘tblAlerts’ which is written to a data grid view control

within the program.

For a more detailed description of this process refer to page 212.

GetEmailUsingID – Investu Server Program – Investu Development 3

This sub-routine is a simple select SQL statement that assigns the variable ‘Email’ a value from the ‘Email’

column in the database, where the accountID attribute in the table, and the accountID variable within the

program match.

 Function GetEmailUsingID(ByVal AccountID)

 Dim Email As String = ""

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT Email FROM tblUserInfo WHERE AccountID=" & AccountID
& ""
 Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

 For Each Record In SQLReply
 Email = Record.item("Email")
 Next

 ConnectionDb.Close()
 Return Email

 End Function

INVESTU – J—H----- 256

GetStockChange – Investu Server Program – Investu Development 3

This sub-routine is from Developmemnt 2. A full description and the code can be found on page 115.

GetStockPrice – Investu Server Program – Investu Development 3

This sub-routine is from Developmemnt 2. A full description and the code can be found on page 117.

GetStockName – Investu Server Program – Investu Development 3

This sub-routine is from Developmemnt 2. A full description and the code can be found on page 116.

StoreCrashInfo – Investu Server Program – Investu Development 3

This sub-routine is from Developmemnt 2. A full description and the code can be found on page 118.

Timer2_Tick – Investu Server Program – Investu Development 3

This sub-routine is called once every 60 seconds, and calls the sub-routine ‘CheckAlerts’.

DBPathButton_Click – Investu Server Program – Investu Development 3

Calls the function ‘GetFilePath’ to allow the user to change the file pathway of the database.

 Function GetStockChange(ByVal StockSymbol As String)

 Function GetStockPrice(ByVal StockSymbol As String)

Function GetStockName(ByVal StockSymbol As String)

 Sub StoreCrashInfo(ByVal CrashMsg, ByVal CrashTime)

Private Sub Timer2_Tick(sender As System.Object, e As System.EventArgs) Handles
Timer2.Tick
 Timer2.Interval = 60000
 CheckAlerts()
End Sub

Private Sub DBPathButton_Click(sender As Object, e As EventArgs) Handles Button4.Click
 DBPath = GetFilePath()
 End Sub

INVESTU – J—H----- 257

Testing 1 – Investu Simulation – Development 3

Every sub-routine has been tested individually to ensure it works independently, however these tests

have not been shown. The tests displayed are tests that show multiple sub-routines and functions

working together to produce the desired outcome.

Many of the features of the simulation that haven’t been changed since Development 2 are not tested

here. To see the tests that are not displayed here, refer to Testing in Development 2, on page 163.

MainForm Testing 1

Show that the

user can view

world news and

market news

within the

simulation.

Loading the program and clicking the ‘World News’ tab displays the above information.

Note that the current time is shown below:

The last story was posted at 8:11am (top right corner of first story). This shows that the

news is fairly recent.

The market news section uses the same code and such we can assume it works.

This indicates that the requirements set out in the test description have been met and

INVESTU – J—H----- 258

the test has therefore been passed.

Show that when

the user

executes a

trade, the

database table

‘tblTradeHistory’

updates with a

new entry, and

the ‘Trade

History’ tab in

the tab control

updates with the

new trade.

As shown above, the database is currently empty. There are no trades in

‘tblTradeHistory’.

Within the simulation, the tab containing trade history is also blank:

A new trade is made, as shown below:

INVESTU – J—H----- 259

Making a new trade offer, with the details above, results in the results below:

The trade has been written into the ‘Trade History’ display in the tab control.

The database is also updated, as shown below:

INVESTU – J—H----- 260

Upon closing the position, the data grid view is again updated:

Reloading the program results in the same display as above – the trade history

information is retained forever.

This indicates that the requirements set out in the test description have been met and

the test has therefore been passed.

Show that the

trade history

display shows

all items in the

users trade

history.

The account has been used for a few minutes, making buy offers and then selling the

stock immediately. The following is the result:

INVESTU – J—H----- 261

Notice how there is an entry for a buy offer for ‘AV.L’ but not sale offer – that is

because the position is still open, as show on the left hand side of the simulation in the

‘Open Positions’ display.

INVESTU – J—H----- 262

This indicates that the requirements set out in the test description have been met and

the test has therefore been passed.

Show that the

details grid

displays all of

the information

within

‘tblStockDetails’.

Above is the contents of the table ‘tblStockDetails’. This table is a visual display of the

information for the details of all companies in the FTSE100.

INVESTU – J—H----- 263

Within the simulation, under the tab ‘FTSE100 Details’, the data is written a gridview.

This indicates that the requirements set out in the test description have been met and

the test has therefore been passed.

Show that the

user can click

‘Info’ and see

more

information

relating to their

trade.

INVESTU – J—H----- 264

As the trade has only just been made, the net gain is quoted as £0. If this position was

left open for a while during a weekday, it would state a positive or negative profit

depending on whether the stock went up or down in price.

This indicates that the requirements set out in the test description have been met and

the test has therefore been passed.

Show that when

the user uses

valid data, they

can make a new

alert.

The price of BHP BILLITON shares is 1534.6. A valid price alert is any integer not

equal to the current price, and not 0. Therefore, 1536 is chosen, as shown in the red

circle on the right.

INVESTU – J—H----- 265

Clicking ‘Create Alert’ results in the above dialogue.

This indicates that the requirements set out in the test description have been met and

the test has therefore been passed.

Show that the

alert is written to

the database, in

the table

‘tblAlerts’, and

that the alerts

display updates

to show the new

alert.

Above shows the table ‘tblAlerts’ within the database. The alert has been added to the

table.

The alert has been added to the ‘Alerts’ tab in the tab control. Adding more alerts

updates this display:

INVESTU – J—H----- 266

The database now has the following entries in ‘tblAlerts’:

This indicates that the requirements set out in the test description have been met and

the test has therefore been passed.

Show that the

user can delete

an alert, and

that the

database and

display will

update to show

the change.

The database has the content shown in the above screenshot.

We will go into the simulation, select an alert and then click ‘Delete’.

INVESTU – J—H----- 267

Clicking delete then causes the display to update, with the alert removed, as shown

below:

The database now only has two alerts in, as opposed to three at the start of the test:

INVESTU – J—H----- 268

This indicates that the requirements set out in the test description have been met and

the test has therefore been passed.

Show that alerts

execute when

the price of the

stock exceeds

the alert price,

and that the

user is notified

by email.

Some alerts are created on an account called ‘Bert’. This account included an email

when it was created.

The account creates a series of alerts, with the alert price very close to the actual

price. This will mean that even a small change in price should result in an alert. The

following screenshot shows the alerts that have been set:

Note the price in the left red circle for the ‘JMAT.L’ stock is very close to the alert price

in the right hand circle. The other alerts also have alert prices very close to the actual

price.

Now, we wait a while for price changes.

After a while, the following email appears in my inbox:

INVESTU – J—H----- 269

Clicking on one of the emails shows the following:

This indicates that the requirements set out in the test description have been met and

the test has therefore been passed.

Show that new

alerts are

rejected if the

Invalid alert data includes entering the current price of the stock as the alert price,

trying to make an alert with blank entries, or using letters as the alert price.

INVESTU – J—H----- 270

input data is

invalid.

This shows that entering an alert price equal to the current price will not be accepted.

INVESTU – J—H----- 271

This shows that alerts with blank inputs will not be accepted.

This shows that non-numeric inputs will not be accepted in the alert price box.

INVESTU – J—H----- 272

This indicates that the requirements set out in the test description have been met and

the test has therefore been passed.

Show that the

user can join a

team from within

the simulation.

A team is created in the database:

There is no members in this team, as shown by the blank link table ‘tblTeamUsers’:

Inside the simulation, this button is clicked:

This results in the following dialogue:

The code entered is ‘AT123’. This results in the following dialogue:

INVESTU – J—H----- 273

The account is then forced out of the simulation back to the sign-in form. Upon signing

back in (with team mode selected), the following dialogue is shown at the top:

To prove further that the user is in the team, we can look at the link table

‘tblTeamUsers’:

The account ID of the account ‘Bert’ is 44, and the team ID of ‘AteamWithNoName’ is

25. Therefore a link between the two exists, and the user is a member of the team.

This indicates that the requirements set out in the test description have been met and

the test has therefore been passed.

Show that the

user is rejected

from the team if

it is full or the

team code is

invalid.

A new account called Billy is created via the sign-up form.

INVESTU – J—H----- 274

The link table ‘tblTeamUsers’ is filled with entries that link a total of 4 accounts to the

team. The maximum number of accounts in a team is 4. Therefore, when Billy tries to

join the team, there should be an error.

Billy is rejected from the team.

Billy tries to join another team with a team code that does not exists (Only 1 team

exists in the database, the team code of which is ‘AT123’.)

INVESTU – J—H----- 275

Billy is not able to sign up to this team either, as the team code does not exist.

This indicates that the requirements set out in the test description have been met and

the test has therefore been passed.

INVESTU – J—H----- 276

AdminView Testing 1

Show that

admins

load into

AdminView

when they

sign in via

the sign in

form.

A new admin is written into the database. Note the check in the ‘Admin’ attribute.

Upon clicking login with the admin details added, the following is displayed:

INVESTU – J—H----- 277

Note that there is no information displayed because there are currently no teams or

accounts to view.

This indicates that the requirements set out in the test description have been met and the

test has therefore been passed.

INVESTU – J—H----- 278

Show that

admins

can create

a team,

and the

team is

inserted

into the

database.

Entering the above information into the boxes given, then pressing ‘Create New Team’,

results in the following dialogue:

Going into the database, under the table ‘tblTeams’, the following is shown:

Note that the use of masked textboxes means it is not possible to enter invalid data into

any of the boxes. See page 201 for more information.

This indicates that the requirements set out in the test description have been met and the

test has therefore been passed.

Show that

the list of

created

teams is

displayed

in the

display.

Creating three teams results in the following list displaying in the display box:

INVESTU – J—H----- 279

This indicates that the requirements set out in the test description have been met and the

test has therefore been passed.

Show that

these

teams can

be

selected,

and more

information

relating to

the team

will

display.

Selecting one of the teams in the list box results in the following display in the display box

on the right hand side of the form:

Note that there are no members or open positions, because the team has just been

created.

This indicates that the requirements set out in the test description have been met and the

test has therefore been passed.

Show that

adding

members

to the team

and

making

trades

shows

within

admin form

when the

A new account is created called Timmy. Timmy joins the team ‘TestTeam5400’ via the sign

up feature within the simulation, using the code’ TT500’. Timmy is then signed in, in team

mode. Timmy makes 2 trades, as shown below:

INVESTU – J—H----- 280

team is

selected.

Loading up the simulation on an admin account now displays the following, when the team

is selected:

Note how Timmy is now listed under ‘members of this team:’ and the trades made on that

account also display below.

This indicates that the requirements set out in the test description have been met and the

test has therefore been passed.

INVESTU – J—H----- 281

Show that

teams with

duplicate

name or

code

cannot be

created.

Trying to make a new team with the same name or code results in the above error. Note

how the details for the team in the ‘Create New Team’ area are the same as an already-

existing team. Therefore, the creation is rejected.

This indicates that the requirements set out in the test description have been met and the

test has therefore been passed.

INVESTU – J—H----- 282

Testing 1 – Investu Server Program – Development 3

Every sub-routine has been tested individually to ensure it works independently, however these tests

have not been shown. The tests displayed are tests that show multiple sub-routines and functions

working together to produce the desired outcome.

Many of the features of the simulation that haven’t been changed since Development 2 are not tested

here. To see the tests that are not displayed here, refer to Testing in Development 2, on page 149.

Show that the

database table

‘tblStockDetails’ is

filled with up-to-

date information

upon clicking the

‘FillDB’ button.

The table ‘tblStockDetails’ is currently empty, as shown below:

After loading the server program, the following display is presented:

Clicking the ‘FillDB’ button results in the following:

INVESTU – J—H----- 283

A file finder appears. This appears to allow the user to select the stock symbol list.

Selecting the CSV file with the symbols in closes the file finder.

The database now appears as follows:

Note there are 46 entries, whereas the expected number is 100 (there are 100 stock

symbols in the FTSE100). This is because the process of fetching the information for all

100 stocks takes a long time. Upon refreshing the database, the following is show:

INVESTU – J—H----- 284

Note that there are now 100 entries. These entries, now that they have been created, will

be kept up to date by Invesu Server Program, as it will update the entries when it receives

new data, every time the timer ticks.

The view of the first 25 entries, from the top of the table, looks as follows:

‘Market Sector’ is an attribute that will have to be manually entered into the database.

That’s because there is no way to retrieve the market sector of a company using the

current method of querying Google Sheets. In a future development it’s possible that a

method could be found to automatically set this attribute and keep it updated.

This indicates that the requirements set out in the test description have been met and the

test has therefore been passed.

INVESTU – J—H----- 285

Show that the

information in

‘tblStockDetails’ is

kept up to date

every time the

timer ticks.

The following shows a screenshot of the table ‘tblStockDetails’, after the button ‘FillDB’ has

been pressed inside Investu Server Program:

Now, the server program is left to run for a few minutes. The result is shown in the

screenshot below:

INVESTU – J—H----- 286

Note how the prices in the ‘Price’ attribute are virtually all different in comparison to the

screenshot taken only a few minutes earlier.

This proves that the table is updating autimatically, and so the data is being kept up to

date.

INVESTU – J—H----- 287

Show that the data

inserted into

‘tblStockDetails’ is

displayed in the

main simulation in

the stock details

display area .

The above screenshot shows the data in the table. This data is originally set by clicking

‘FillDB’, then kept up to date via the timer tick, which updates the relevant entry every time

new information is retrieved.

Loading the program and selecting the ‘Stock Details’ tab in the tab control shows the

following:

INVESTU – J—H----- 288

This indicates that the requirements set out in the test description have been met and the

test has therefore been passed.

Show that the

database file path

and

StockSymbols.CSV

file path can be

changed.

For this test two CSV files with symbols are created:

The first begins with the symbol ‘AAL.L’:

INVESTU – J—H----- 289

The second beginds with the symbol ‘CRH.L’

Clicking ‘Start’ in the program shows a file finder dialogue:

We can navigate through the file directory to the two different CSV files. For the first run of

the program, the first CSV file is selected. The following is the result:

INVESTU – J—H----- 290

Note how the program begins from ‘AAL.L’ – the first symbol in the first CSV file.

The second run of the program uses the second CSV file:

Note how the first symbol is now ‘CRH.L’, the same as in the second CSV file.

This indicates that the requirements set out in the test description have been met and the

test has therefore been passed.

Show that alerts

created by users

within the main

simulation are

loaded into the list

of alerts in the

server program.

The above screenshot shows the table ‘tblAlerts’. Loading the server program shows the

display below:

INVESTU – J—H----- 291

INVESTU – J—H----- 292

Note how all 4 of the alerts are displayed within the program. These alerts will then be

checked constantly until the conditions are met, at which point they will be executed, and

the alert deleted.

This indicates that the requirements set out in the test description have been met and the

test has therefore been passed.

Show that the list

of alerts is checked

regularly.

This test requires an addition to the code. This addition is a message box, that will show

every time an alert is checked, but not executed due to not meeting the execution

conditions.

Immediately after loading the program, the following dialogue appears:

This alert appears 4 times, once for each alert. Clicking ‘Ok’ on all 4 results in no boxes.

They reappear after about a minute – this is because alerts are checked every minute in

the program.

This indicates that the requirements set out in the test description have been met and the

test has therefore been passed.

Show that alerts

are executed and

users notified when

A number of alerts were created, as seen in the right hand display in the below screenshot.

INVESTU – J—H----- 293

the the alert price

is exceeded.

Now that these alerts have been set, we wait for stock price changes. When the prices

exceed the alert prices, an alert will be sent.

INVESTU – J—H----- 294

INVESTU – J—H----- 295

After leaving the program a while, one of the alerts sends. Notice that the alert price in the

top right red circle is 4773. Then, notice the left hand red circle shows that the current price

has just changed to 4774. Because the alert is an ‘Up’ alert (The alert was set when the

actual price was below the alert price), the alert has triggered, hence the message box.

At the time of taking this screenshot, two alerts have triggered, and as such they are no

longer in the list of alerts within the program.

Checking the Investu outlook account shows the following emails have been sent:

Visiting the email that is shown in the screenshot above, we see the following:

INVESTU – J—H----- 296

Clicking on one of the emails displays the following text:

INVESTU – J—H----- 297

Conclusi

on

INVESTU – J—H----- 298

Feedback #5 – Users - Investu – Development 3

For the final development of the program I wanted to contact some users and the client in order to gauge

their satisfaction with the final product. I gave 4 users from the clients class the program and went back a

week later to discuss their experience. The following is a recorded in-person conversation that was had,

with the users.

Me

“Can you give me an insight into your experiences over the last week of using Investu?”

Ben

“It’s been good – I’ve been using it a little bit each day just checking how things are doing and I’ve made a

lot of progress. I got Mr B. to make us a team so I’ve been using it with my SIC group and it’s been good

fun”

Me

“How is the trading going – have you had any success?”

Alex

 “We’ve had a lot of success. We’ve found the news features in this last update really useful – if you don’t

have any idea about which stock to invest in it’s great to just be able to check the professional’s opinion

easily within the program. We connected our school emails and so we’ve all been getting alerts

throughout the day, which has made it really easy to trade as you and can just wait until the perfect time

to buy or sell. It’s simple really.”

Me

“How has the team dynamic worked out?”

Ollie

“Great – it was really simple to get together, we just asked Mr B. for the code and we were away. We

found the process really smooth – you can easily leave and join other teams. My team is doing try-outs

for our fourth position, as someone can’t make it for the next challenge, so we’ve been using that feature

to take people in then remove them and test other people. The notes system has been really good for that

too. It’s great to be able to see who’s making each trade and why – sometimes you forget the goal of a

trade or why you made it and so that’s good to be able to see.

Me

“Which positives are there of having Investu, in your opinion?”

Ben

“I think there’s a lot of positives – it’s so easy to keep in the trading mindset outside of the SIC season.

You have to be on the ball when you’re trading – constantly checking your positions and the market and

reading all the time to make sure you’re making good choices. It’s easy to fall out of the rhythm when you

don’t do it for a long time, so having Investu is going to be great for keeping in the mindset while we get

ready before and after. The fact Mr B. can see the progress of our account is great too – we’ve been

INVESTU – J—H----- 299

having a running conversation over the last few days about which trades we’ve made and he’s had some

good feedback.”

Me

“Any negatives or things that need improving?”

Alex

“I wouldn’t exactly call them negatives. the simulation does exactly what is needed. I think there are

things that could make the experience even better though. I think more analysis would be good. Maybe

the option to apply a list of models to the price data of a stock and see what they say? - there are some

models that take quantitative data and produce an output saying whether to buy or sell. I know you can

get those in Python. I’m not sure about Visual Basic. Why did you choose Visual Basic? I feel like Python

would be much more suited to this type of thing. Anyway, things like that would be really useful. Also, I

think the graph system could be expanded. The graphs show recent data which is great, but what if we

could see the data from as far back as possible? Being able to scrub through it and see trends would be

great. Then we could try and associate patterns to current events and predict things. I think it would just

give a broader picture of what’s going on.”

Me

“Thanks for the feedback.”

INVESTU – J—H----- 300

Feedback #6 – Client - Investu – Development 3

Me

“How has your experience been over the last week of using the simulation?”

Client

“It’s been a lot of fun – the group and I have been using it on and off between lessons and such and it’s

been really nice – it allows me to interact with them in a way that I haven’t been able to previously. I think

it’s a resounding success.

Me

“What areas do you think Investu is strong in?”

Client

“Theres a lot of great things – it’s simple and easy to use, the process of trading is very simple. The users

have been really active as well, which is nice to see. I think thats because they can use it in a team, which

creates a much more social and enjoyable experience. The fact that they can receive notifications on their

phones also keeps the idea of trading in their mind. I’ve been observing through my teachers account and

it’s good to be able to see their though process and the progress they’re making.”

Me

“Do you feel as though all of these aims, that we discussed in our initial conversations, have been met?”

Client

“I think so. Investu is definitely what we need it to be and I’m happy with the result. It’s easy to use, and

does everything I can remember asking for. I think the idea has been executed very well.”

Me

“What would you consider some of the weaker aspects of the simulation? What would you like to see

added in future versions?”

Client

“The simulation is very strong – but depending on how far you’d want to go into it theres lots that could be

done to further it. Making an app would be great, for example – would mean everyone could use it an any

point without the need for a computer. Things like analysis as well would be really good additions – the

teachers account would benefit a lot from statistics and analysis of the progress of the students. If I could

see a score board of all the teams in order of the highest balance, or most profit in a week and so on, I

think it could really add something.

Me

“Thanks for your help.”

INVESTU – J—H----- 301

Analysis of Feedback from Users

In general, the users seem satisfied with the state of the simulation. The users report using the features

provided to enhance their trading experience, and to effectively profit within the simulation. The users also

seems to find the simulation beneficial for their SIC preparation. The team system appears to be working

as intended.

The users report that more analysis would be beneficial to the experience. They also want more

functionality provided with the graph section.

Analysis of Feedback from Client

The client seems overall satisfied with the produced work. They particularly enjoy the interactive nature of

the simulation and the simplicity/ease of use. The client believes that the simulation specification stated in

the analysis has been effectively executed.

The client reports that additions to the admin mode feature allowing for team progress analysis would be

beneficial. The client thinks features such as a team leaderboard would be beneficial to the simulation.

INVESTU – J—H----- 302

Updated Feature List

Development 3 has successfully been implemented, with all of the features in the feature list implemented.

Testing was a success with a minimal amount of errors found. The following is the updated feature list,

with green, teal and pink representing features implemented in Development 1, 2 and 3 respectively.

• Ability to create and login to accounts (client)

• Ability to join and trade on a team account (client)

• Ability for users to be designated as admins (client)

• Ability for account progress on team and personal accounts to be saved between sessions

(inferred from client and user)

• Ability for admins to view teams list (inferred from client)

• Ability for admins to view team details and progress (inferred from client)

• Ability to view real-time information for all FTSE 100 stocks (client and user)

• Ability to select an amount of stocks and buy that amount using an up to date virtual balance, at

real current price (client/user)

• Display for all stocks currently held in portfolio (client/SIC)

• Ability to sell stocks in portfolio at real current price (client)

• Graphs to display current day price trends of all stocks (user)

• Graph to show all time price changes of all stocks (inferred from user)

• Ability to create price alerts and be notified when stock reaches current price (inferred from user)

• Interface allowing users to see all current alerts on their account (inferred from user)

• Interface allowing user to see entire trade history (SIC)

• Interface allowing user to see all stocks in the FTSE 100 in a single screen, with details such as

price (SIC)

• Notes section displayed in trade history and portfolio with reasons for trade decision (user)

The only feature that has not been implemented is the historic graph. The user reported that the ability to

see the entire price history of a stock would be a useful tool to provide insight into price patterns over the

companies trading history. However, during development I was unable to find a data source to provide, in

most cases over a decade worth of stock data. Furthermore, if I was able to find this data source, plotting

the data into a graph would be impractical, as it would contain millions of data points over a period of up

to 20 years. One could argue that select data points every week or month could be selected and plotted,

but this would still require a large amount of processing power that is not practical on the school

computers.

For this reason, the graph to show the entire price history has been excluded from the program. Instead,

the user has access to an intra-day graph that shows data from the current trading day.

INVESTU – J—H----- 303

Analyising Objectives

At the beginning of the project, a series of objectives were described, derived from interviews with the

client and users, and research of stock market simulators that already exists. That list of objectives is

displayed below. The colour code represents the extent to which the objectives have been met.

Objective

Success?

Create an intuitive interface with easy-to-use controls From the feedback received from the client and

the user, it seems that they are very pleased with

the intuitive, easy to use nature of the program. I

would therfore say that this objective has been

met

Ability to select stocks and view the price info within

a 30 second delay of real price

This objective has been met, with an even smaller

delay than allowed. The estimated delay from real

time prices is around 5-10 seconds. (Note that this

only applies to the drop-down box, and does not

include the graph, which displays data at around

100 second delay)

Visualization of price changes of current stock, and

ability to display historic price data

This objective has also been met. A graph system

has been implemented, that displays the stock

data from the current day.

Ability for users to buy and sell stocks using a virtual

balance that is kept up to date.

The balance system works effectively, with high

accuracy. The system allows users to keep a

balance that will be saved when they log out.

Ability for users to trade on a private account or on a

team account

The team system was integrated into the

simulation during Development 2. The system has

proven effective and achieved its purpose,

according to the interviews the client and users.

Ability for teacher to create teams and observe their

progress

The AdminView form was successfully been

added during Development 3. It allows the teacher

to create teams and observe their progress.

Implementation of all secondary features stated in

the feature list, such as a news feed, trade history,

alerts system etc.

Every feature in the secondary feature list that

was created through feedback from client and

user interviews, except one. That feature is the

historic graph, that was unable to be added as a

data source could not be found to provide data

from previous years. This is explained in the

previous section.

INVESTU – J—H----- 304

Changes for Future Developments

Development 3 puts Investu in a state that is acceptable for the client, and achieves the goal set out in

the analysis: create a real-time stock market investment simulator for students to practice trading in

preperation for the Student Investor Challenge.

However, there is definitely more that could be added to Investu to develop it further. Based on feedback

received from users and the client, the following are potential updates that may come in future

developments of Investu:

Improved analyitcal capabilities

Both the users and client mentioned that the analytical aspect of the simulation could be improved to help

them with their respective aims.

For the user, this would include analysis of both quantitative and qualititive data, both of their trading

progress and stock market data, to produce insightful and reliable results. For example, the analysis of

ability for users to analyse quantitative price data of certain stocks, and potentially extrapolate future price

changes. Combined with analysis of qualitative data such as market news relating to specific companies

in the FTSE100, this could provide the user useful tools to aid their trading experience. Furthermore,

analysis of user trading history could also be a beneficial addition. For example, the ability for users to

see a summary of their trading history with profit/loss displayed as a function of time, and the ability to

see ordered lists of most impactful/profitable trades and some form of analysis of these would definitely

aid the user in recognising trends regarding their trading history, and potentially aid them in improving the

effectiveness of their strategy.

For the client, improved analytical capabilities would entail the ability for the client to analyse the

quantitative data that results from the trades made by their teams. In theory, an active group of 10 or so

teams that use the simulation multiple times per day and make a significant number of trades over a

period of time, could provide a useful dataset that could be analysed, and show trends that could benefit

the students through improving their trading strategy. Furthermore, analysis of a number of attributes

relating to team trading such as ‘profit per week’ or ‘highest risk trade’ could lead to interesting learning

opportunities, in which the teacher, being able to see the leading and trailing teams in each area, could

provide useful insights to teams, such as advising teams which areas they are trailing in in relation to

other teams. This could also create an interesting competetive aspect to the simulation, in which users

could compete in certain categories, and the teacher could award prizes to the team at the top of the

leaderboard.

Improved Potential for Expansion of User Base

Currently, Investu is designed with the client in mind. In future, if this software proves to be successful in

its aim, then teachers may wish to share the simulation. This could be done a number of ways, however

the most interesting way would be via centralising the database and server program on a remote server,

instead of locally, and then connecting to the database/server via the internet.

This would be beneficial for a number of reasons, one of which would be the resulting dataset. Multiple

classes per school across multiple schools would produce a significant amount of data that could be

INVESTU – J—H----- 305

analysed, as well as creating scoreboards and competitions for teams. Another benefit would be

protecting the database. Currently, the database has to be stored on the local system, and in order for

users to access it on their simulation, it needs to be in a public area. This leaves the database vulnerable,

as it is easily accessible. Even if the database was in read-only mode and protected, the fact that it is

stored in the public file system is not ideal.

However, in order to do this, the program itself needs significant changes. One of these changes would

be an upgraded admin system, to allow for multiple admins to use the system simultaneously. Currently,

the only way to create an admin is to hard-code the credentials into the database. This would ofcourse

not be possible with a remote, encrypted database which was accessible to hundreds of students. The

program would therefore need to be updated to allow for the creation of admins, and a new attribute

would need to be added to the team table to show which admin created which team. This would then

allow for only the teams of each admin to display in the AdminView form.

A further change necessary would be in the connection to the database. The database is currently

connected to locally as it exists in the local file system. If the database was stored on a remote server,

then the connection for each query would need to be changed to account for that.

Further changes that would increase the possibility of one day having a larger, multi-school user base

would be an overhaul of the hard-coded values in the system. Currently, there are a lot of values that

have been written into the code that cannot be changed. Some of these include database file locations. In

order for the user base to expand successfully, as many of these hard-coded values as possible would

need to be changed so that they could be editted by the user or teacher.

Expanded Access to Indexes and Securities

Currently, the simulation is hard-coded to only process FTSE100 information. In future versions, it would

be beneficial to be able to trade on a range of different markets. The ability to trade on NASDAQ, S&P500,

FTSE250, Dow Jones Industrial Average and other indexes would theoretically not be too difficult, as it

would require a similar process as the FTSE100 that is already implemented. The difficult part would be

revamping the current code to accept other indexes, as almost all instances relating the list of symbols

has been hard-coded to 100, representing the 100 companies in the FTSE100. If this symbol list was

suddenly expanded to more than 100, then almost all aspects of the code would cease to function.

Securities are tradeable financial assets. Not all securities are stocks and shares. Securities can include

things like debt, equity, currencies, futures and options. The integration of these securities into Investu

would greatly increase the complexity of the simulation, closer to a real life trading experience. In the

future, this could be a good step for the simulation to take, as it would provide a lot of new content for

users to try, and increase the realism.

INVESTU – J—H----- 306

Appendix 1 –

Development

3 Code

INVESTU – J—H----- 307

MainForm

Imports System.IO
Imports System.Xml
Imports System.Windows.Forms.DataVisualization.Charting
Imports System.Data.OleDb

Public Class MainForm

 Public AccessDatabaseConnection As String = "Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=; Data Source=R:\Students\Computing ICT\Handin\Year13\StockInfoDB.mdb"

 Public OpenPositions As New List(Of StockAttributes)
 Public Symbols As New List(Of String)

 Dim Series1 As New Series
 Dim LastValue As Decimal

 Public AccountID As Integer
 Public TeamMode As Boolean
 Public TeamName As String
 Public Balance As Decimal

 Public ErrorMsg As String

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

 AccountID = LoginForm.AccountID
 TeamMode = LoginForm.TeamMode

 If TeamMode = True Then
 TeamName = LoginForm.TeamName
 LoginLabel.Text = "Welcome, " & LoginForm.Username & ". (" & TeamName & ")"
 ElseIf TeamMode = False Then
 TeamName = "0"
 LoginLabel.Text = "Welcome, " & LoginForm.Username & ""
 End If

 Balance = Math.Round(FetchBalance(), 2)
 BalanceBox.Text = "£" & Math.Round((Balance / 100), 2)

 FetchOpenPositions()
 FetchWorldNews()
 FetchMarketNews()
 FetchTradeHistory()
 LoadDetailsGrid()
 FetchAlerts()
 CreateChart()
 GraphSettings()

 GraphScaleComboBox.SelectedItem = "2"

 PopulateSymbolArray("C:\Users\Joe\Documents\visual studio 2010\Investu
Writeup\Development 3\StockSymbols.csv")
 For L = 0 To Symbols.Count - 1

INVESTU – J—H----- 308

 SelectStockComboBox.Items.Add(Symbols(L))
 Next

 End Sub

 Public Sub PopulateSymbolArray(ByVal FilePath As String)

 Dim CSVData() As String

 Using SR As New StreamReader(FilePath)

 While Not SR.EndOfStream
 CSVData = SR.ReadLine().Split(",")

 If String.IsNullOrEmpty(CSVData(0)) Then
 MsgBox("Error loading FTSE 100")
 Else
 Symbols.Add(CSVData(0).Trim)
 End If

 End While
 End Using

 End Sub

 Sub FetchAlerts()

 Dim QueryString As String

 If TeamMode Then
 QueryString = "SELECT * FROM tblAlerts WHERE TeamName='" & TeamName & "'"
 Else
 QueryString = "SELECT * FROM tblAlerts WHERE TeamName='0' AND AccountID=" &
AccountID & ""
 End If

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = QueryString
 Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

 For Each Record In SQLReply
 If TeamMode Then
 AlertsIDListBox.Items.Add(Record.Item("AlertID"))
 AlertsListBox.Items.Add(GetNameUsingID(Record.item("AccountID")) & " - "
& Record.item("StockSymbol") & " - " & Record.item("AlertPrice"))
 Else
 AlertsIDListBox.Items.Add(Record.Item("AlertID"))
 AlertsListBox.Items.Add(Record.item("StockSymbol") & " - " &
Record.item("AlertPrice"))
 End If

 Next

 ConnectionDb.Close()

 End Sub

 Sub DeleteAlert(ByVal AlertID As Integer)

INVESTU – J—H----- 309

 MsgBox(AlertID)
 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()
 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = "DELETE * FROM tblAlerts WHERE AlertID=" & AlertID & ""
 cmd.ExecuteNonQuery()
 ConnectionDb.Close()
 End Sub

 Function GetNameUsingID(ByVal AccountID)
 Dim AccountName As String = ""

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT Username FROM tblUserInfo WHERE AccountID=" & AccountID
& ""
 Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

 For Each Record In SQLReply
 AccountName = Record.item("Username")
 Next

 ConnectionDb.Close()
 Return AccountName

 End Function

 Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Timer1.Tick

 Dim StockInfoString

 Try
 Timer1.Interval = 60000
 StockInfoString = FetchStockDetailsString(SelectStockComboBox.SelectedItem)
 NameBox.Text = SplitStockInfo(StockInfoString, "Name")
 PriceBox.Text = SplitStockInfo(StockInfoString, "Price")
 ChangeBox.Text = SplitStockInfo(StockInfoString, "Change")

 Series1.Points.Clear()
 Plot24hrData()
 LoadDetailsGrid()

 UpdatePortfolio()

 GraphSettings()

 VolatilityBox.Text = CalculateVolatility(PriceBox.Text, ChangeBox.Text) & "%"

 Catch ex As Exception
 MsgBox(ex.ToString())
 End Try

 End Sub

 Sub FetchTradeHistory()

 Dim MyConnection As OleDbConnection
 Dim Adapter As OleDbDataAdapter

INVESTU – J—H----- 310

 Dim DataSet As DataSet
 Dim Tables As DataTableCollection
 Dim Source As New BindingSource

 MyConnection = New OleDbConnection
 MyConnection.ConnectionString = AccessDatabaseConnection
 DataSet = New DataSet
 Tables = DataSet.Tables

 If TeamMode Then
 Adapter = New OleDbDataAdapter("SELECT * FROM tblTradeHistory WHERE
TeamName='" & TeamName & "'", MyConnection)
 Else
 Adapter = New OleDbDataAdapter("SELECT * FROM tblTradeHistory WHERE
AccountID=" & AccountID & " AND TeamName='0'", MyConnection)
 End If

 Adapter.Fill(DataSet, "[tblTradeHistory]")
 Dim View As New DataView(Tables(0))
 Source.DataSource = View
 DataGridView1.DataSource = View

 DataGridView1.Columns(0).Width = 50
 DataGridView1.Columns(1).Width = 50
 DataGridView1.Columns(2).Width = 50
 DataGridView1.Columns(3).Width = 75
 DataGridView1.Columns(4).Width = 75
 DataGridView1.Columns(5).Width = 125
 DataGridView1.Columns(6).Width = 50
 DataGridView1.Columns(7).Width = 50
 DataGridView1.Columns(8).Width = 80

 End Sub

 Sub LoadDetailsGrid()

 Dim MyConnection As OleDbConnection
 Dim Adapter As OleDbDataAdapter
 Dim DataSet As DataSet
 Dim Tables As DataTableCollection
 Dim Source As New BindingSource

 MyConnection = New OleDbConnection
 MyConnection.ConnectionString = AccessDatabaseConnection
 DataSet = New DataSet
 Tables = DataSet.Tables
 Adapter = New OleDbDataAdapter("SELECT * FROM [tblStockDetails]", MyConnection)
 Adapter.Fill(DataSet, "tblStockDetails")
 Dim View As New DataView(Tables(0))
 Source.DataSource = view
 StockDetailsGrid.DataSource = view

 StockDetailsGrid.Columns(0).Width = 66
 StockDetailsGrid.Columns(1).Width = 140
 StockDetailsGrid.Columns(4).Width = 187

 End Sub

 Function CalculateVolatility(ByVal Price As Decimal, ByVal Change As Decimal)
 Dim Volatility As Decimal

INVESTU – J—H----- 311

 Price = Math.Abs(Price)
 Change = Math.Abs(Change)

 If Price <> 0 And Change <> 0 Then
 Volatility = (Change / Price) * 100
 Volatility = Math.Round(Volatility, 2)
 Else
 Volatility = 0
 End If

 Return Volatility

 End Function

 Function FetchBalance()

 Dim CommandString As String

 If TeamMode = True Then
 CommandString = "SELECT Balance FROM tblTeams WHERE TeamName='" & TeamName &
"'"
 Else
 CommandString = "SELECT Balance FROM tblUserInfo WHERE AccountID=" &
AccountID & ""
 End If

 Using Connection As New OleDbConnection(AccessDatabaseConnection)

 Dim Command As New OleDbCommand(CommandString, Connection)
 Connection.Open()
 Dim reader As OleDbDataReader = Command.ExecuteReader()

 While reader.Read()
 Balance = reader(0)
 End While

 reader.Close()
 End Using

 Return Balance
 End Function

 Sub FetchOpenPositions()

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

 If TeamMode = True Then
 cmd.CommandText = "SELECT StockSymbol, StockName, StockQuantity, BuyPrice,
AccountID, OpenPositionID, TradeDate FROM tblOpenPositions WHERE
tblOpenPositions.TeamName='" & TeamName & "'"
 Else
 cmd.CommandText = "SELECT StockSymbol, StockName, StockQuantity, BuyPrice,
AccountID, OpenPositionID, TradeDate FROM tblOpenPositions WHERE AccountID='" & AccountID
& "' AND TeamName='0'"

 End If

INVESTU – J—H----- 312

 Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

 For Each Record In SQLReply
 OpenPositions.Add(New StockAttributes With {.StockSymbol =
Record.item("StockSymbol"), .StockValue = Record.item("BuyPrice"), .StockQuantity =
Record.item("StockQuantity"), .OpenPositionID = Record.item("OpenPositionID"), .StockName
= Record.item("StockName"), .BuyDate = Record.item("TradeDate")})
 UpdatePortfolio()

 Next

 ConnectionDb.Close()

 End Sub

 Function FetchStockDetailsString(ByVal StockSymbol As String)

 Dim InformationString As String = ""

 Dim Document As XmlDocument
 Dim Nodelist As XmlNodeList
 Dim Node As XmlNode

 Document = New XmlDocument()

Document.Load("https://spreadsheets.google.com/feeds/list/0AhySzEddwIC1dEtpWF9hQUhCWURZNE
ViUmpUeVgwdGc/1/public/basic?sq=symbol=" & StockSymbol)
 Nodelist = Document.GetElementsByTagName("entry")

 For Each Node In Nodelist
 InformationString = Node.ChildNodes.Item(4).InnerText
 Next

 Return InformationString

 End Function

 Sub FetchMarketNews()

 WebBrowser2.DocumentText = ""

 Dim stocknews As String = ""

 Try
 Dim document As XmlDocument
 Dim DescriptionNodes As XmlNodeList

 document = New XmlDocument()

document.Load("https://finance.google.com/finance/company_news?q=INDEXFTSE:UKX&ei=HynOWZC
1MpKKUunwl-gF&output=rss")

 DescriptionNodes = document.GetElementsByTagName("description")

 For L = 1 To DescriptionNodes.Count - 1
 stocknews += DescriptionNodes.Item(L).InnerText
 MsgBox("")
 Next

 MsgBox("")

INVESTU – J—H----- 313

 WebBrowser2.DocumentText = stocknews

 Catch errorVariable As Exception

 MsgBox(errorVariable.ToString())
 End Try

 End Sub

 Sub FetchWorldNews()

 WebBrowser1.DocumentText = ""
 Dim StockNews As String = ""

 Try
 Dim document As XmlDocument
 Dim TitleNodes, DescriptionNodes, LinkNodes, ArticleNodes As XmlNodeList

 document = New XmlDocument()
 document.Load("http://feeds.bbci.co.uk/news/world/rss.xml")

 TitleNodes = document.GetElementsByTagName("title")
 DescriptionNodes = document.GetElementsByTagName("description")
 LinkNodes = document.GetElementsByTagName("link")
 ArticleNodes = document.GetElementsByTagName("pubDate")

 For L = 0 To 25
 stocknews += "" & "" & TitleNodes.Item(L +
2).InnerText & " " & "" & ""
 stocknews += "" & ArticleNodes.Item(L).InnerText
& "" & "
"
 stocknews += DescriptionNodes.Item(L + 1).InnerText & "
"
 stocknews += "" & "Read more at " &
LinkNodes.Item(L + 2).InnerText & "" & "

"
 Next

 WebBrowser1.DocumentText += StockNews

 Catch errorVariable As Exception
 MsgBox(errorVariable.ToString())
 End Try

 End Sub

 Function SplitStockInfo(ByVal StringToSplit As String, ByVal DetailsToExtract As
String)

 Dim ExtractedDetails As String = ""

 Dim ArrayList() As String = StringToSplit.Split(":")
 Dim SubArrayList() As String = ArrayList(1).Split(",")
 Dim SubArrayList1() As String = ArrayList(2).Split(",")

 Select Case DetailsToExtract

 Case "Name"
 If Trim(SubArrayList(0)) = "#N/A" Then
 ExtractedDetails = "ERROR"
 Else
 ExtractedDetails = Trim(SubArrayList(0))
 End If

INVESTU – J—H----- 314

 Case "Price"
 If Trim(SubArrayList1(0)) = "#N/A" Then
 ExtractedDetails = "0"
 Else
 ExtractedDetails = Trim(SubArrayList1(0))
 End If

 Case "Change"
 If Trim(ArrayList(3)) = "#N/A" Then
 ExtractedDetails = "0"
 Else
 ExtractedDetails = Trim(ArrayList(3))
 End If

 End Select

 Return ExtractedDetails
 End Function

 Private Sub BuyButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles BuyButton.Click
 If SelectStockComboBox.SelectedItem <> "" Then
 If PriceBox.Text <> "0" Then
 BuyForm.Show()
 Else
 MsgBox("You cannot buy this stock due to an error.")
 End If
 Else
 MsgBox("Please select the stock you wish to buy, from the drop down menu
provided.")
 End If

 End Sub

 Sub UpdatePortfolio()

 Dim TotalTradePrice As Decimal
 Dim CurrentTotalPrice As Decimal

 OpenPositionsListBox.Items.Clear()

 For l = 0 To OpenPositions.Count - 1
 TotalTradePrice = Math.Round(((OpenPositions(l).StockValue *
OpenPositions(l).StockQuantity) / 100), 2)

 CurrentTotalPrice = Math.Round(((GetStockPrice(OpenPositions(l).StockSymbol)
* OpenPositions(l).StockQuantity) / 100), 2)
 OpenPositionsListBox.Items.Add(OpenPositions(l).StockName & " - Bought " &
OpenPositions(l).StockQuantity & " FOR £" & TotalTradePrice & " (" &
OpenPositions(l).StockValue & " each)" & vbNewLine)
 Next

 End Sub

 Private Sub SelectStockComboBox_SelectedIndexChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles SelectStockComboBox.SelectedIndexChanged

 Timer1.Start()

 Series1.Points.Clear()

INVESTU – J—H----- 315

 Timer1.Interval = 1
 Plot24hrData()

 End Sub

 Public Sub Plot24hrData()

 Dim Query As String = "SELECT FetchDate, StockPrice FROM tblStockPriceHistory
WHERE StockSymbol = '" & SelectStockComboBox.SelectedItem & "' ORDER BY FetchDate"

 Using connection As New OleDbConnection(AccessDatabaseConnection)
 Dim command As New OleDbCommand(Query, connection)

 connection.Open()

 Dim reader As OleDbDataReader = command.ExecuteReader()

 While reader.Read()

 If reader(0) >= DateTime.Today Then
 PlotNewPoint((reader(0)).ToOADate(), reader(1))
 LastValue = reader(1)
 End If

 End While

 reader.Close()
 End Using
 End Sub

 Sub PlotNewPoint(ByVal XValue As Decimal, ByVal YValue As Decimal)
 Series1.Points.AddXY(XValue, YValue)
 End Sub

 Function GetStockChange(ByVal StockSymbol As String)

 Dim StockChange As Decimal

 Try

 Dim document As XmlDocument
 Dim nodelist As XmlNodeList
 Dim node As XmlNode

 document = New XmlDocument()

document.Load("https://spreadsheets.google.com/feeds/list/0AhySzEddwIC1dEtpWF9hQUhCWURZNE
ViUmpUeVgwdGc/1/public/basic?sq=symbol=" & StockSymbol)
 nodelist = document.GetElementsByTagName("entry")

 For Each node In nodelist
 StockChange = SplitStockInfo(node.ChildNodes.Item(4).InnerText, "Change")

 Next

 Catch errorVariable As Exception
 Timer1.Stop()

 End Try
 Return StockChange
 End Function

INVESTU – J—H----- 316

 Function GetStockPrice(ByVal StockSymbol As String)

 Dim StockPrice As Decimal

 Try

 Dim document As XmlDocument
 Dim nodelist As XmlNodeList
 Dim node As XmlNode

 document = New XmlDocument()

document.Load("https://spreadsheets.google.com/feeds/list/0AhySzEddwIC1dEtpWF9hQUhCWURZNE
ViUmpUeVgwdGc/1/public/basic?sq=symbol=" & StockSymbol)
 nodelist = document.GetElementsByTagName("entry")

 For Each node In nodelist
 StockPrice = SplitStockInfo(node.ChildNodes.Item(4).InnerText, "Price")

 Next

 Catch errorVariable As Exception
 Timer1.Stop()
 End Try
 Return StockPrice

 End Function
 Function GetStockName(ByVal StockSymbol As String)

 Dim StockName As String = "Error"

 Try

 Dim document As XmlDocument
 Dim nodelist As XmlNodeList
 Dim node As XmlNode

 document = New XmlDocument()

document.Load("https://spreadsheets.google.com/feeds/list/0AhySzEddwIC1dEtpWF9hQUhCWURZNE
ViUmpUeVgwdGc/1/public/basic?sq=symbol=" & StockSymbol)
 nodelist = document.GetElementsByTagName("entry")

 For Each node In nodelist
 StockName = SplitStockInfo(node.ChildNodes.Item(4).InnerText, "Name")
 Next

 Catch errorVariable As Exception
 Timer1.Stop()

 End Try

 Return StockName

 End Function

 Private Sub ClosePositionsButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClosePositionsButton.Click

 Try

INVESTU – J—H----- 317

 Dim NewStockPrice As Decimal
 Dim SelectedStock As String = OpenPositionsListBox.SelectedIndex

 If OpenPositionsListBox.Items.Count > 0 And
OpenPositionsListBox.CheckedItems.Count > 0 Then

 NewStockPrice = GetStockPrice(OpenPositions(SelectedStock).StockSymbol)

 Balance = Balance + (OpenPositions(SelectedStock).StockQuantity *
NewStockPrice)

 BalanceBox.Text = "£" & Math.Round((Balance / 100), 2)

 Dim CommandString As String

 If TeamMode Then
 CommandString = "UPDATE tblTeams SET tblTeams.Balance=" & Balance & "
WHERE tblTeams.TeamName='" & TeamName & "';"
 Else
 CommandString = "UPDATE tblUserInfo SET tblUserInfo.Balance=" &
Balance & " WHERE (((tblUserInfo.AccountID)=" & AccountID & "));"
 End If

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

 StoreNewTrade(OpenPositions(SelectedStock).OpenPositionID, NewStockPrice)

 cmd.CommandText = "DELETE * FROM tblOpenPositions WHERE OpenPositionID='"
& OpenPositions(SelectedStock).OpenPositionID & "' "
 cmd.ExecuteNonQuery()

 cmd.CommandText = CommandString
 cmd.ExecuteNonQuery()

 ConnectionDb.Close()

 OpenPositions.RemoveAt(OpenPositionsListBox.SelectedIndex)
 UpdatePortfolio()

 Else
 MsgBox("Please select the position you'd like to close.")
 End If

 FetchTradeHistory()
 Catch ex As Exception
 MsgBox(ex.ToString())
 End Try

 End Sub

 Private Sub Button1_Click(sender As System.Object, e As System.EventArgs) Handles
InfoButton.Click

 Dim SelectedStock As String = OpenPositionsListBox.SelectedIndex

INVESTU – J—H----- 318

 Dim Value As Decimal = OpenPositions(SelectedStock).StockValue
 Dim StockName As String = OpenPositions(SelectedStock).StockName
 Dim Quantity As String = OpenPositions(SelectedStock).StockQuantity
 Dim StockSymbol As String = OpenPositions(SelectedStock).StockSymbol

 Dim CurrentTotalPrice As Decimal = Math.Round(((GetStockPrice(StockSymbol) *
Quantity) / 100), 2)
 Dim TotalTradePrice As Decimal = Math.Round(((Value * Quantity) / 100), 2)

 MsgBox("You bought" & Quantity & " " & StockName & " shares for a price of " &
Value & " each, costing a total of £" & TotalTradePrice & ". " & vbNewLine & StockName &
" shares are now worth " & GetStockPrice(StockSymbol) & " each, making your shares worth
a total of £" & CurrentTotalPrice & "." & vbNewLine & "Your net gain from this trade is
£" & TotalTradePrice - CurrentTotalPrice & ".")
 End Sub

 Sub StoreNewTrade(ByVal OpenPositionID As String, ByVal CurrentPrice As Integer)

 Dim InsertString As String = ""

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT StockSymbol, StockQuantity FROM tblOpenPositions WHERE
OpenPositionID='" & OpenPositionID & "'"
 Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

 For Each Record In SQLReply
 InsertString = "INSERT INTO tblTradeHistory (AccountID, StockSymbol,
StockQuantity, BuyOrSell, TradePrice, TradeDate, TeamName) VALUES ('" & AccountID & "','"
& Record.item("StockSymbol") & "','" & Record.item("StockQuantity") & "','Sell','" &
CurrentPrice & "','" & DateTime.Now & "','" & TeamName & "')"
 Next

 SQLReply.Close()

 cmd.CommandText = InsertString
 cmd.ExecuteNonQuery()
 ConnectionDb.Close()
 End Sub

 Private Sub CreateAlertButton_Click(sender As System.Object, e As System.EventArgs)
Handles CreateAlertButton.Click

 Dim UpOrDown As String

 If SelectStockComboBox.Text <> "Select Stock Symbol" Then
 If AlertPriceBox.Text > PriceBox.Text Then
 UpOrDown = "UP"
 Else
 UpOrDown = "DOWN"
 End If

 CreateNewAlert(UpOrDown)
 AlertsListBox.Items.Clear()
 AlertsIDListBox.Items.Clear()
 FetchAlerts()
 Else

INVESTU – J—H----- 319

 MsgBox("You need to select a stock from the drop down menu first.")
 End If

 End Sub

 Sub CreateNewAlert(ByVal UpOrDown As String)

 If ValidateAlertPrice(AlertPriceBox.Text) Then

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = "INSERT INTO tblAlerts (AccountID, StockSymbol, AlertPrice,
TeamName, UpOrDown) VALUES (" & AccountID & ",'" & SelectStockComboBox.SelectedItem &
"','" & AlertPriceBox.Text & "','" & TeamName & "','" & UpOrDown & "')"
 cmd.ExecuteNonQuery()
 ConnectionDb.Close()

 MsgBox("A new alert for " & NameBox.Text & " at " & AlertPriceBox.Text & "
has been set.")
 Else
 MsgBox("Please enter a valid alert price.")
 End If

 End Sub

 Function ValidateAlertPrice(ByVal Price As String)

 Dim Numbers As New System.Text.RegularExpressions.Regex("[0-9]")
 Dim NotNumbers As New System.Text.RegularExpressions.Regex("[^0-9]")

 If Len(Price) < 2 Then Return False
 If NotNumbers.Matches(Price).Count > 0 Then Return False

 Return True
 End Function

 Private Sub LogoutButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles LogoutButton.Click

 LoginForm.Show()
 Me.Close()

 End Sub

 Private Sub GraphScaleComboBox_SelectedIndexChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles GraphScaleComboBox.SelectedIndexChanged
 Timer1.Interval = 1
 End Sub

 Private Sub OpenPositionsListBox_ItemCheck(ByVal sender As Object, ByVal e As
System.Windows.Forms.ItemCheckEventArgs) Handles OpenPositionsListBox.ItemCheck

 If e.NewValue = CheckState.Checked Then
 For i As Integer = 0 To Me.OpenPositionsListBox.Items.Count - 1 Step 1
 If i <> e.Index Then Me.OpenPositionsListBox.SetItemChecked(i, False)
 Next

INVESTU – J—H----- 320

 End If
 End Sub

 Sub CreateChart()

 Series1.Name = SelectStockComboBox.SelectedItem
 Series1.ChartType = SeriesChartType.Line
 Series1.BorderWidth = 4
 Chart1.Series.Add(Series1)
 Chart1.Legends.Clear()
 Series1.XValueType = ChartValueType.DateTime
 Series1.BorderWidth = 2

 End Sub

 Sub GraphSettings()

 Chart1.ChartAreas(0).AxisY.Minimum = LastValue - Val(GraphScaleComboBox.Text)
 Chart1.ChartAreas(0).AxisY.Maximum = LastValue + Val(GraphScaleComboBox.Text)
 Chart1.Update()

 End Sub

 Private Sub Timer2_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Timer2.Tick
 GraphSettings()
 Timer2.Interval = 5000

 End Sub

 Private Sub OpenToolStripButton_Click(sender As System.Object, e As System.EventArgs)
Handles OpenToolStripButton.Click

 Dim TeamCode As String
 TeamCode = InputBox("Please input the 5 character Team Code here, issued to you
by your teacher", "Join Team", "")

 If ValidTeamCode(TeamCode) Then
 If UserAlreadyInTeam(AccountID) Then
 DeleteUserFromTeam(AccountID)
 AddNewPlayerToTeam(AccountID, TeamCode)
 Else
 AddNewPlayerToTeam(AccountID, TeamCode)

 End If

 LoginForm.Show()
 Me.Close()
 Else
 MsgBox(ErrorMsg)
 End If

 End Sub

 Sub DeleteUserFromTeam(ByVal AccountID As Integer)

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

INVESTU – J—H----- 321

 cmd.CommandText = "DELETE * FROM tblTeamUsers WHERE AccountID=" & AccountID & ""
 cmd.ExecuteNonQuery()

 MsgBox("You have been removed from your current team.")

 ConnectionDb.Close()

 End Sub

 Function UserAlreadyInTeam(ByVal AccountID As Integer)
 Dim AlreadyInTeam As Boolean

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand
 Dim SQLReply As OleDbDataReader

 cmd = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT AccountID FROM tblTeamUsers WHERE AccountID=" &
AccountID & ""
 SQLReply = cmd.ExecuteReader

 For Each Record In SQLReply
 AlreadyInTeam = True
 Next
 ConnectionDb.Close()

 Return AlreadyInTeam
 End Function

 Function ValidTeamCode(ByVal TeamCode As String)

 If CheckTeamCodeExists(TeamCode) Then

 If EmptySpaceInTeam(TeamCode) Then
 Return True
 Else
 ErrorMsg = "The team you are trying to join is already full."
 End If
 Else
 ErrorMsg = "The Team Code you entered does not exist."
 End If

 Return False

 End Function

 Function CheckTeamCodeExists(ByVal TeamCode As String)

 If TeamCode = "" Then
 Return False
 End If

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand
 Dim SQLReply As OleDbDataReader

INVESTU – J—H----- 322

 cmd = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT TeamCode FROM tblTeams"
 SQLReply = cmd.ExecuteReader

 For Each Record In SQLReply

 If Record.item("TeamCode") = TeamCode Then

 Return True
 End If
 Next
 ConnectionDb.Close()

 Return False
 End Function

 Function EmptySpaceInTeam(ByVal TeamCode As String)

 Dim EmptySpace As Boolean = False
 Dim TeamID As Integer
 Dim UsersAlreadyInTeam As Integer = 0

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand
 Dim SQLReply As OleDbDataReader

 cmd = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT TeamID FROM tblTeams WHERE TeamCode='" & TeamCode & "'"
 SQLReply = cmd.ExecuteReader

 For Each Record In SQLReply
 TeamID = Record.item("TeamID")
 Next

 cmd = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT * FROM tblTeamUsers WHERE TeamID=" & TeamID & ""
 SQLReply = cmd.ExecuteReader

 For Each Record In SQLReply
 UsersAlreadyInTeam += 1
 Next

 If UsersAlreadyInTeam < 4 Then
 EmptySpace = True
 End If

 ConnectionDb.Close()

 Return EmptySpace
 End Function

 Sub AddNewPlayerToTeam(ByVal AccountID As Integer, ByVal TeamCode As String)

 Dim TeamID As Integer
 Dim TeamName As String = ""

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)

INVESTU – J—H----- 323

 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand
 Dim SQLReply As OleDbDataReader

 cmd = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT TeamID, TeamName FROM tblTeams WHERE TeamCode='" &
TeamCode & "'"

 SQLReply = cmd.ExecuteReader

 For Each Record In SQLReply
 TeamID = Record.item("TeamID")
 TeamName = Record.item("TeamName")
 Next

 SQLReply.Close()

 cmd.CommandText = "INSERT INTO tblTeamUsers (AccountID, TeamID) VALUES (" &
AccountID & ",'" & TeamID & "')"

 MsgBox("You have joined " & TeamName & "")

 cmd.ExecuteNonQuery()

 ConnectionDb.Close()

 End Sub

 Private Sub Button1_Click_1(sender As Object, e As EventArgs) Handles Button1.Click
 DeleteAlert(AlertsIDListBox.SelectedItem)
 AlertsListBox.Items.Clear()
 AlertsIDListBox.Items.Clear()
 FetchAlerts()
 End Sub
End Class

Public Class StockAttributes

 Public StockSymbol As String
 Public StockName As String
 Public OpenPositionID As String
 Public StockValue As Decimal
 Public StockQuantity As Integer
 Public BuyDate As DateTime

End Class

INVESTU – J—H----- 324

BuyForm

Imports System.Data.OleDb

Public Class BuyForm

 Dim Quantity As Integer
 Dim StockPrice As Decimal = MainForm.PriceBox.Text
 Dim Stocksymbol As String = MainForm.SelectStockComboBox.SelectedItem
 Dim Stockname As String = MainForm.NameBox.Text

 Dim FinalPrice As Decimal

 Dim TeamMode As Boolean
 Dim TeamName As String

 Dim AccessDatabaseConnection As String = MainForm.AccessDatabaseConnection

 Private Sub Form2_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

 Quantity = 1
 QuantityBox.Text = Quantity

 FinalPrice = (StockPrice * Quantity)

 PriceBox.Text = "£" & Math.Round((FinalPrice) / 100, 2)

 TeamMode = MainForm.TeamMode
 TeamName = MainForm.TeamName

 StockDisplayBox.Clear()
 StockPriceBox.Clear()

 StockDisplayBox.Text = Stockname
 StockPriceBox.Text = StockPrice
 End Sub

 Private Sub TrackBar1_Scroll(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles QuantitySlider.Scroll

 QuantitySlider.Maximum = Int(MainForm.Balance / StockPrice)
 Quantity = QuantitySlider.Value
 QuantityBox.Text = Quantity

 FinalPrice = 1.2 * (StockPrice * Quantity)
 PriceBox.Text = "£" & Math.Round((FinalPrice) / 100, 2)

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button1.Click

 If NotesBox.TextLength > 255 Then
 MsgBox("Your note is too long.")
 Else

INVESTU – J—H----- 325

 For L = 0 To MainForm.Symbols.Count - 1

 If MainForm.Symbols(L) = MainForm.SelectStockComboBox.SelectedItem Then

 If MainForm.Balance > (Quantity * StockPrice) Then
 MainForm.OpenPositions.Add(New StockAttributes With {.StockSymbol
= MainForm.Symbols(L), .StockValue = StockPrice, .StockQuantity =
Quantity, .OpenPositionID = MainForm.AccountID & DateTime.Now, .BuyDate =
DateTime.Now, .StockName = Stockname})
 StoreNewPosition(MainForm.AccountID, Stockname, Stocksymbol,
Quantity, StockPrice, DateTime.Now, TeamName, NotesBox.Text)
 UpdateBalance(MainForm.AccountID)
 MainForm.UpdatePortfolio()

 Me.Close()
 Else
 MsgBox("You don't have enough money to buy that many " &
Stockname & " stocks.")
 End If
 End If
 Next
 MainForm.FetchTradeHistory()
 End If
 End Sub
 Sub UpdateBalance(ByVal AccountID As Integer)

 MainForm.Balance = MainForm.Balance - ((Quantity * StockPrice))
 MainForm.BalanceBox.Text = "£" & Math.Round((MainForm.Balance / 100), 2)

 Dim CommandString As String
 If TeamMode Then
 CommandString = "UPDATE tblTeams SET tblTeams.Balance=" & MainForm.Balance &
" WHERE tblTeams.TeamName='" & TeamName & "';"

 Else
 CommandString = "UPDATE tblUserInfo SET tblUserInfo.Balance=" &
MainForm.Balance & " WHERE (((tblUserInfo.AccountID)=" & AccountID & "));"
 End If

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

 cmd.CommandText = CommandString

 cmd.ExecuteNonQuery()
 ConnectionDb.Close()
 End Sub
 Sub StoreNewPosition(ByVal ID As Integer, ByVal StockName As String, ByVal
StockSymbol As String, ByVal StockQuantity As Integer, ByVal StockValue As Decimal, ByVal
BuyDate As Date, ByVal TeamName As String, ByVal Notes As String)

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = "INSERT INTO TblOpenPositions (AccountID, StockName,
StockSymbol, StockQuantity, BuyPrice, TradeDate, OpenPositionID, TeamName) VALUES ('" &

INVESTU – J—H----- 326

ID & "','" & StockName & "','" & StockSymbol & "','" & StockQuantity & "','" & StockValue
& "','" & BuyDate & "','" & ID & BuyDate & "','" & TeamName & "')"

 cmd.ExecuteNonQuery()

 cmd.CommandText = "INSERT INTO TblTradeHistory (AccountID, StockSymbol,
StockQuantity, BuyOrSell, TradePrice, TradeDate, TeamName, Notes) VALUES ('" & ID & "','"
& StockSymbol & "','" & StockQuantity & "','Buy','" & StockValue & "','" & BuyDate &
"','" & TeamName & "','" & Notes & "')"

 cmd.ExecuteNonQuery()
 ConnectionDb.Close()
 End Sub
End Class

INVESTU – J—H----- 327

SignUpForm

Imports System.Data.OleDb

Public Class SignUpForm

 Dim AccessDatabaseConnection As String = MainForm.AccessDatabaseConnection

 Dim ErrorMsg As String
 Dim EmptySlot As String

 Private Sub SignUpButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CreateAccountButton.Click

 If ProceedToSignUp() Then
 CreateNewAccount(UsernameBox.Text, PasswordBox.Text, EmailBox.Text)

 LoginForm.UsernameTextBox.Text = UsernameBox.Text
 LoginForm.PasswordTextBox.Text = PasswordBox.Text

 MsgBox("Your account has been created! Click login to proceed.")

 Me.Close()
 End If

 End Sub

 Sub CreateNewAccount(ByVal Username As String, ByVal Password As String, ByVal Email
As String)

 Dim Balance As Integer = 10000000

 Dim TeamName As String = ""

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand
 cmd = ConnectionDb.CreateCommand

 cmd.CommandText = "INSERT INTO tblUserInfo (Username, Balance, Passwrd) VALUES
('" & Username & "','" & Balance & "','" & Password & "')"

 cmd.ExecuteNonQuery()

 ConnectionDb.Close()

 End Sub

 Function ProceedToSignUp()

 If ValidatePassword(PasswordBox.Text) Then
 If ValidUsername(UsernameBox.Text) Then
 If ValidEmail(EmailBox.Text) Then
 Return True
 Else
 MsgBox("The email you have entered is invalid")
 End If

INVESTU – J—H----- 328

 Else
 MsgBox("The username you have entered is already taken.")
 End If
 Else
 MsgBox("Invalid Password - Passwords must have at least 1 upper case
character, 1 number and 8 total characters.")
 End If

 Return False
 End Function

 Function ValidUsername(ByVal NewUsername As String)

 If UsernameBox.Text = "" Or PasswordBox.Text = "" Then
 ErrorMsg = "The Username and Password are required fields."
 Return False
 Else

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand
 Dim SQLReply As OleDbDataReader

 cmd = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT Username FROM tblUserInfo"
 SQLReply = cmd.ExecuteReader

 For Each Record In SQLReply

 If Record.item("Username") = NewUsername Then
 Return False
 End If
 Next

 ConnectionDb.Close()

 End If
 Return True
 End Function

 Function ValidatePassword(ByVal Password As String, Optional ByVal MinLength As
Integer = 8, Optional ByVal NumUpper As Integer = 1, Optional ByVal NumLower As Integer =
1, Optional ByVal NumNumbers As Integer = 1, Optional ByVal NumSpecial As Integer = 0) As
Boolean

 Dim UpperCase As New System.Text.RegularExpressions.Regex("\p{Lu}")
 Dim LowerCase As New System.Text.RegularExpressions.Regex("[a-z]")
 Dim Numbers As New System.Text.RegularExpressions.Regex("[0-9]")

 Dim Specials As New System.Text.RegularExpressions.Regex("[^a-zA-Z0-9]")

 If Len(Password) < MinLength Then Return False

 If UpperCase.Matches(Password).Count < NumUpper Then Return False
 If LowerCase.Matches(Password).Count < NumLower Then Return False
 If Numbers.Matches(Password).Count < NumNumbers Then Return False
 If Specials.Matches(Password).Count < NumSpecial Then Return False

 Return True

INVESTU – J—H----- 329

 End Function

 Function ValidEmail(ByVal Email As String)
 Dim Valid As Boolean = False

 If Email = "" Then
 Valid = True
 Else
 Valid = True
 End If
 Return Valid

 End Function

End Class

INVESTU – J—H----- 330

AdminViewForm

Imports System.Data.OleDb
Public Class AdminView

 Dim AccessDatabaseConnection As String = MainForm.AccessDatabaseConnection

 Private Sub AdminView_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 FetchTeams()
 End Sub

 Sub FetchTeams()

 Dim TeamID As Integer
 Dim TeamInfo As String

 TeamInfoCheckedListbox.Items.Clear()
 TeamIdCheckedListBox.Items.Clear()

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()
 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT TeamID, TeamName, Balance, TeamCode FROM tblTeams"

 Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

 For Each Record In SQLReply
 TeamID = Record.item("TeamID")
 TeamIdCheckedListBox.Items.Add(TeamID)

 TeamInfo = Record.item("TeamName") & " - " & Record.Item("TeamCode") & " - "
& Record.item("Balance")
 TeamInfoCheckedListbox.Items.Add(TeamInfo)
 Next

 ConnectionDb.Close()
 End Sub

 Function ValidateInputs(ByVal NewTeamName As String, ByVal NewTeamCode As String)
 Dim ValidTeamInfo As Boolean = True

 If TeamNameBox.Text = "" Or TeamCodeBox.Text = "" Or BalanceBox.Text = "" Then

 ValidTeamInfo = False
 Else

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

 cmd.CommandText = "SELECT TeamName, TeamCode FROM tblTeams"

 Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

INVESTU – J—H----- 331

 For Each Record In SQLReply

 If Record.item("TeamName") = NewTeamName Or Record.item("TeamCode") =
NewTeamCode Then
 ValidTeamInfo = False
 End If
 Next

 End If
 Return ValidTeamInfo
 End Function

 Sub CreateNewTeam(ByVal NewTeamName As String, ByVal NewTeamCode As String)

 Dim Balance As Integer = BalanceBox.Text * 100

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

 cmd.CommandText = "INSERT INTO tblTeams (TeamName, TeamCode, Balance) VALUES ('"
& NewTeamName & "','" & NewTeamCode & "','" & Balance & "')"
 cmd.ExecuteNonQuery()

 ConnectionDb.Close()

 MsgBox("A new team with the name " & NewTeamName & " and team code " &
NewTeamCode & " has been created.")

 FetchTeams()

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button1.Click
 If ValidateInputs(TeamNameBox.Text, TeamCodeBox.Text) Then
 CreateNewTeam(TeamNameBox.Text, TeamCodeBox.Text)
 Else
 MsgBox("There was an error creating the new team. Your team name may already
be taken or you have entered invalid information.")
 End If
 End Sub

 Private Sub TeamIdCheckedListBox_ItemCheck(ByVal sender As Object, ByVal box As
System.Windows.Forms.ItemCheckEventArgs) Handles TeamIdCheckedListBox.ItemCheck

 If box.NewValue = CheckState.Checked Then

 For index = 0 To TeamIdCheckedListBox.Items.Count - 1

 If index <> box.Index Then
 Me.TeamIdCheckedListBox.SetItemChecked(index, False)
 Me.TeamInfoCheckedListbox.SetItemChecked(index, False)
 Else
 TeamInfoCheckedListbox.SetItemChecked(index, True)
 End If
 Next
 End If
 End Sub

INVESTU – J—H----- 332

 Sub FetchTeamInfo()

 TeamDetailsListBox.Items.Clear()

 Dim TeamID As Integer = TeamIdCheckedListBox.Text
 Dim Balance As Integer
 Dim TeamName As String = ""

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand
 Dim SQLReply As OleDbDataReader

 cmd = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT * FROM tblTeams WHERE TeamID=" & TeamID & ""

 SQLReply = cmd.ExecuteReader

 For Each Record In SQLReply

 TeamName = Record.item("TeamName")
 Balance = Record.item("Balance") / 100

 TeamDetailsListBox.Items.Add("You are viewing the details of " &
Record.item("TeamName") & " - Team Code: " & Record.Item("TeamCode"))

 TeamDetailsListBox.Items.Add("The team currently has £" & Balance)
 TeamDetailsListBox.Items.Add("")
 TeamDetailsListBox.Items.Add("The following are the members of this team:")

 FetchUsersInTeam(TeamID)
 Next

 TeamDetailsListBox.Items.Add("")
 TeamDetailsListBox.Items.Add(TeamName & " has the following open positions;")

 cmd = ConnectionDb.CreateCommand

 cmd.CommandText = "SELECT * FROM tblOpenPositions WHERE TeamName='" & TeamName &
"'"

 SQLReply = cmd.ExecuteReader

 For Each Record In SQLReply
 TeamDetailsListBox.Items.Add(Record.item("StockSymbol") & " - " &
Record.item("StockQuantity") & " - " & Record.item("BuyPrice") & " - " &
Record.item("TradeDate"))
 Next

 End Sub

 Sub FetchUsersInTeam(ByVal TeamID As Integer)

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand
 Dim SQLReply As OleDbDataReader

INVESTU – J—H----- 333

 cmd = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT tblUserInfo.Username FROM tblUserInfo, tblTeamUsers,
tblTeams WHERE tblTeams.TeamID=" & TeamID & " AND tblTeamUsers.TeamID = tblTeams.TeamID
AND tblTeamUsers.AccountID = tblUserInfo.AccountID"

 SQLReply = cmd.ExecuteReader

 For Each Record In SQLReply
 TeamDetailsListBox.Items.Add(Record.item("Username"))
 Next

 End Sub

 Function FetchMemberInfo(ByVal UserID As Integer)
 Dim MemberInfoString As String = ""

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

 cmd.CommandText = "SELECT Username, Passwrd, AccountID FROM tblUserInfo WHERE
AccountID=" & UserID & ""

 Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

 For Each Record In SQLReply
 MemberInfoString += "Username: " & Record.Item("Username") & " "
 MemberInfoString += "Password: " & Record.item("Passwrd")
 Next

 Return MemberInfoString
 End Function
 Private Sub TeamIdCheckedListBox_SelectedIndexChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles TeamIdCheckedListBox.SelectedIndexChanged

 FetchTeamInfo()
 End Sub

 Private Sub TeamInfoCheckedListbox_SelectedIndexChanged(sender As System.Object, e As
System.EventArgs) Handles TeamInfoCheckedListbox.SelectedIndexChanged

 End Sub
End Class

INVESTU – J—H----- 334

LoginForm

Imports System.Data.OleDb

Public Class LoginForm

 Dim AccessDatabaseConnection As String = MainForm.AccessDatabaseConnection

 Public AccountID As Integer
 Public Admin As Boolean
 Public TeamName As String
 Public TeamMode As Boolean = False
 Public Username As String

 Private Sub OK_Click(sender As System.Object, e As System.EventArgs) Handles OK.Click

 Username = UsernameTextBox.Text

 If ValidUserLogin(Username, PasswordTextBox.Text) Then
 LoadUserInfo(AccountID)

 If Admin = True Then

 AdminView.Show()
 Me.Close()

 Else
 If TeamModeCheckBox.Checked Then

 If TeamName = "" Then
 MsgBox("You don't have a team! You will be loaded into single
user mode.")
 Else
 TeamMode = True
 End If
 End If

 MainForm.Show()
 Me.Close()
 End If
 Else
 MsgBox("Invalid Username or Password.")
 End If
 End Sub

 Function ValidUserLogin(ByVal Username As String, ByVal Password As String)

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand
 cmd.CommandText = "SELECT AccountID FROM tblUserInfo WHERE Username='" & Username
& "' AND Passwrd='" & Password & "'"

 Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

INVESTU – J—H----- 335

 For Each Record In SQLReply
 AccountID = Record.item("AccountID")
 Return True
 Next

 ConnectionDb.Close()

 Return False

 End Function

 Sub LoadUserInfo(ByVal AccountID As Integer)

 Dim UserValid As Boolean = False
 TeamName = ""

 Dim ConnectionDb As New OleDbConnection(AccessDatabaseConnection)
 If ConnectionDb.State = ConnectionState.Closed Then ConnectionDb.Open()

 Dim cmd As OleDbCommand = ConnectionDb.CreateCommand

 cmd.CommandText = "SELECT tblTeams.TeamName FROM tblTeams, tblTeamUsers,
tblUserInfo WHERE tblTeams.TeamID = tblTeamUsers.TeamID AND tblTeamUsers.AccountID =
tblUserInfo.AccountID AND tblUserInfo.AccountID=" & AccountID & ""

 Dim SQLReply As OleDbDataReader = cmd.ExecuteReader

 For Each Record In SQLReply

 TeamName = Record.item("TeamName")

 Next
 SQLReply.Close()

 cmd.CommandText = "SELECT Admin FROM tblUserInfo WHERE AccountID=" & AccountID &
""

 Dim SQLReply1 As OleDbDataReader = cmd.ExecuteReader

 For Each Record In SQLReply1
 Admin = Record.item("Admin")

 Next

 ConnectionDb.Close()
 End Sub

 Private Sub Cancel_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Cancel.Click
 Me.Close()
 End Sub

 Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs)
 Me.Close()
 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button1.Click
 SignUpForm.Show()

INVESTU – J—H----- 336

 End Sub

End Class

INVESTU – J—H----- 337

Bibliography

i https://www.lseg.com/markets-products-and-services/our-markets/london-stock-exchange/derivatives-
markets/equity-index-derivatives/ftse-100

ii auth. Biello David // Scientific American. - https://www.scientificamerican.com/article/can-math-beat-

financial-markets/.

iii https://www.investopedia.com/dictionary/.

iv https://www.online-sciences.com/programming/visual-basics-programming-language-advantages-and-
disadvantages/

v Automatic database normalization and primary key generation [Journal] / auth. Bahmani Amir

Hassan, Naghibzadeh Mahmoud and Bahmani Behnam

vi https://msdn.microsoft.com/en-us/library/system.xml.xmldocument(v=vs.110).aspx

vii https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/populating-a-dataset-from-a-
dataadapter

https://www.lseg.com/markets-products-and-services/our-markets/london-stock-exchange/derivatives-markets/equity-index-derivatives/ftse-100
https://www.lseg.com/markets-products-and-services/our-markets/london-stock-exchange/derivatives-markets/equity-index-derivatives/ftse-100
https://www.investopedia.com/dictionary/
https://msdn.microsoft.com/en-us/library/system.xml.xmldocument(v=vs.110).aspx
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/populating-a-dataset-from-a-dataadapter
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/populating-a-dataset-from-a-dataadapter

